Skip to main content
Log in

Origin and infinity manifolds for mechanical systems with homogeneous potentials

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We study manifolds describing the behavior of motions close to the origin and at infinity of configuration space, for mechanical systems with homogeneous potentials. We find an inversion between these behaviors when the sign of the degree of homogeneity is changed. In some cases, the blow up equations can be written in canonical form, by first reducing to a contact structure. A motivation for the use of blow-up techniques is given, and some examples are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I.:Mathematical Methods of Classical Mechanics, Springer-Verlag, N.Y. (1978).

    Google Scholar 

  2. Arnold, V. I.:Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, N.Y. (1983).

    Google Scholar 

  3. Broucke, R.: Simple non integrable systems with two degrees of freedom, in V.Szebehely (ed.),Instabilities in Dynamical Systems, D. Reidel, Dordrecht (1979).

    Google Scholar 

  4. Bryant, J.: Le formalisme de contact en mécanique classique et relativiste,Ann. Inst. Henri Poincaré 38 (1983), 121–152.

    Google Scholar 

  5. Devaney, R. L.: Singularities in classical mechanical systems, in A.Katok, (ed.),Ergodic Theory and Dynamical Systems I, Birkhäuser, Basle, p. 211 (1981).

    Google Scholar 

  6. Griffiths, P. and Harris, J.:Principles of Algebraic Geometry, John Wiley, N.Y. (1978).

    Google Scholar 

  7. Lacomba, E. A.: Variétés de l'infini pour une énergie non nulle en mécanique célèste,Comptes Rendus Acad. Sci. Paris 295-I (1982), 503–506.

    Google Scholar 

  8. Lacomba, E. A.: Infinity manifolds for positive energy in celestial mechanics, Proc. Lefschetz International Conference,Contemporary Math. 58, Part III (1987), 193–201.

    Google Scholar 

  9. Lacomba, E. A. and Bryant, J.: Contact structures for total collision and zero energy infinity manifolds in celestial mechanics,Atti Accad. Sci. Torino, Suppl. 117 (1983), 563–568.

    Google Scholar 

  10. Lacomba, E. A. and Simó, C.: Boundary manifolds for energy surfaces in celestial mechanics,Celestial Mech. 28 (1982), 37–48.

    Google Scholar 

  11. Lichnerowicz, A.: Variétés symplectiques, variétés canoniques et systèmes dynamiques,Topics in Differential Geometry, Academic Press, N.Y., pp. 57–85 (1976).

    Google Scholar 

  12. Losco, L.: Sur un théorème de stabilité pour un potentiel homogène,Celestial Mech. 28 (1982), 63–68.

    Google Scholar 

  13. McGehee, R.: Triple collision in the collinear three-body problem,Invent. Math. 27 (1974), 191–227.

    Google Scholar 

  14. Smale, S.: Topology and mechanics I, II,Invent. Math. 10 (1970), 305–331;11 (1970), 45–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by CONACyT (Mexico), under grants PCCBNAL 790178 and PCCBBNA 022553.

Member of CIFMA (Mexico). On sabbatical leave at the University of Barcelona during the year 1987–88.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacomba, E.A., Ibort, L.A. Origin and infinity manifolds for mechanical systems with homogeneous potentials. Acta Applicandae Mathematicae 11, 259–284 (1988). https://doi.org/10.1007/BF00140121

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00140121

AMS subject classifications (1980)

Key words

Navigation