Boundary-Layer Meteorology

, Volume 40, Issue 1–2, pp 101–125 | Cite as

The effect of water surface temperature on lake breezes and thermal internal boundary layers

  • Raymond W. Arritt
Article

Abstract

A two-dimensional prognostic numerical model has been used to study a lake breeze event reported by Keen and Lyons (1978). Model predictions showed fair to good agreement with the observations. For the mature lake breeze, the model predicted inflow at the coast within about 1.5 m s−1 of the observed value, lake breeze depth within 50–90 m of the observed, and inland penetration within about 6 km of the observed. The top of the thermal internal boundary layer (TIBL) was associated with a minimum in the predicted turbulent kinetic energy profile. This may be of consequence for attempts to evaluate pollutant dispersion using numerical models.

Predicted lake breeze characteristics showed little sensitivity to temperature of the water surface, except when the water surface temperature was increased to a value exceeding the inland maximum temperature. The most sensitive lake breeze characteristic was the TIBL, which grew more slowly with inland distance and persisted for a greater distance inland as the lake surface became colder.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, P. and Neumann, J.: 1984, ‘On the Enhanced Smoothing Over Topography in Some Mesometeorological Models’, Boundary-Layer Meteorol. 30, 293–312.Google Scholar
  2. Arritt, R. W.: 1985, ‘Numerical Studies of Thermally and Mechanically Forced Circulations Over Complex Terrain’, Ph. D. dissertation, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.Google Scholar
  3. Atwater, M. A. and Brown, P.: 1974, ‘Numerical Calculation of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity’, J. Appl. Meteorol. 13, 289–297.Google Scholar
  4. Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.Google Scholar
  5. Blondin, C.: 1981, ‘ Project CYBELE: Developpement en météorologie dynamique environmentalle (2e partie)’, Note de Travail de l'Etablissement d'Etudes et de Recherches Météorologiques, No. 15, 40 pp.Google Scholar
  6. Burk, S. D.: 984, ‘The Generation, Turbulent Transfer and Deposition of the Sea-Salt Aerosol’, J. Atmos. Sci. 41, 3040–3051.Google Scholar
  7. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.Google Scholar
  8. Campbell, G. S.: 977, An Introduction to Environmental Biophysics, Springer-Verlag, 159 pp.Google Scholar
  9. Estoque, M. A.: 1961, ‘A Theoretical Investigation of the Sea Breeze’, Quart. J. R. Meteorol. Soc. 87, 136–146.Google Scholar
  10. Estoque, M. A.: 1962, ‘The Sea Breeze as a Function of the Prevailing Synoptic Situation’, J. Atmos. Sci. 19, 244–250.Google Scholar
  11. Estoque, M. A., Gross, J., and Lai, H. W.: 1976, ‘A Lake Breeze Over Southern Lake Ontario’, Mon. Wea. Rev. 104, 386–396.Google Scholar
  12. Fiedler, B.: 1984, ‘An Integral Closure Model for the Vertical Turbulent Flux of a Scalar in a Mixed Layer’, J. Atmos. Sci. 41, 674–680.Google Scholar
  13. Gamo, M., Yamamoto, S., and Yokoyama, O.: 1982, ‘Airborne Measurements of the Free Convective Internal Boundary Layer During the Sea Breeze’, J. Meteorol. Soc. Japan 60, 1284–1298.Google Scholar
  14. Garrett, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Within and Above the Nocturnal Boundary Layer’, J. Atmos. Sci. 38, 2730–2746.Google Scholar
  15. Keen, C. S. and Lyons, W. A.: 1978, ‘Lake/Land Breeze Circulations on the Western Shore of Lake Michigan’, J. Appl. Meteorol. 17, 1843–1855.Google Scholar
  16. Kerman, B. R., Mickle, R. E., Portelli, R. V., Trivett, N. B., and Mistra, P. K.: 1982, ‘The Nanticoke Shoreline Diffusion Experiment, June 1978-II. Internal Boundary Layer Structure’, Atmos. Environ. 16, 423–437.Google Scholar
  17. Klemp, J. B. and Wilhelmson, R. B.: 1978, ‘The Simulation of Three-Dimensional Convective Storm Dynamics’, J. Atmos. Sci. 35, 1070–1096.Google Scholar
  18. Liu, M.-K., Myers, T. C., and McElroy, J. L.: 1979, ‘Numerical Modeling of Land and Sea Breeze Circulation Along a Complex Coastline’, Mathematics and Computers in Simulation 21, 359–367.Google Scholar
  19. Louis, J.-F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.Google Scholar
  20. Lyons, W. A. and Olsson, L. E.: 1973, ‘Detailed Mesometeorological Studies of Air Pollution Dispersion in the Chicago Lake Breeze’, Mon. Wea. Rev. 101, 387–403.Google Scholar
  21. Maddukuri, C. S.: 1982, ‘A Numerical Simulation of an Observed Lake Breeze Over Southern Lake Ontario’, Boundary-Layer Meteorol. 23, 369–387.Google Scholar
  22. Mahrer, Y. and Pielke, R. A.: 1977, ‘A Numerical Study of the Airflow Over Irregular Terrain’, Contrib. Atmos. Phys. 50, 98–113.Google Scholar
  23. Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advective Terms in a Numerical Mesoscale Model’, Mon. Wea. Rev. 105, 1151–1162.Google Scholar
  24. McPherson, R. D.: 1970, ‘A Numerical Study of the Effect of a Coastal Irregularity on the Sea Breeze’, J. Appl. Meteorol. 9, 767–777.Google Scholar
  25. Ogawa, Y., Ohara, T., Wakamatsu, S., Diosey, P. G., and Uno, I.: 1986, ‘Observation of Lake Breeze Penetration and Subsequent Development of the Thermal Internal Boundary Layer for the Nanticoke II Shoreline Diffusion Experiment’, Boundary-Layer Meteorol. 35, 207–230.Google Scholar
  26. Ohara, T. and Ogawa, Y.: 1985, ‘The Turbulent Structure of the Internal Boundary Layer Near Shore. Part 2: Similarity and Energy Budget Analysis’, Boundary-Layer Meteorol. 32, 39–56.Google Scholar
  27. Paltridge, G. W. and Platt, C. M. R.: 1976, Radiative Processes in Meteorology and Climatology, Elsevier Publishers, Amsterdam.Google Scholar
  28. Physick, W. L.: 1976, ‘A Numerical Model of the Sea Breeze Phenomenon Over a Lake or Gulf’, J. Atmos. Sci. 33, 2107–2135.Google Scholar
  29. Pielke, R. A.: 1974, ‘A Three-Dimensional Numerical Model of the Sea Breezes Over South Florida’, Mon. Wea. Rev. 102, 115–139.Google Scholar
  30. Pielke, R. A.: 1984, Mesoscale Numerical Modeling, Academic Press, New York.Google Scholar
  31. Sasamori, T.: 1972, ‘A Linear Harmonic Analysis of Atmospheric Motion with Radiative Dissipation’, J. Meteorol. S9c. Japan 50, 505–517.Google Scholar
  32. Segal, M. and Pielke, R. A.: 1985, ‘The Effect of Water Temperature and Synoptic Winds on the Development of Surface Flows Over Narrow, Elongated Water Bodies’, J. Geophys. Res. 90 (C3), 4907–4910.Google Scholar
  33. Shapiro, R.: 1971, ‘The Use of Linear Filtering as a Parameterization of Atmospheric Diffusion’, J. Atmos. Sci. 28, 523–531.Google Scholar
  34. Smedman, A.-S. and Högström, U.: 1983, ‘Turbulent Characteristics of a Shallow Convective Internal Boundary Layer’, Boundary-Layer Meteorol. 25, 271–287.Google Scholar
  35. Staley, D. O. and Jurica, G. M.: 1970, ‘Flux Emissivity Tables for Water Vapor, Carbon Dioxide and Ozone’, J. Appl. Meteorol. 9, 365–372.Google Scholar
  36. Tremback, C. J. and Kessler, R. C.: 1985, A Surface Temperature and Moisture Parameterization for Use in Mesoscale Numerical Models, Seventh Conf. Numerical Wea. Pred., American Meteorological Society, pp. 355–358.Google Scholar
  37. Venkatram, A.: 1986, ‘An Examination of Methods to Estimate the Height of the Coastal Internal Boundary Layer’, Boundary-Layer Meteorol. 36, 149–156.Google Scholar
  38. Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-Down and Bottom-Up Diffusion of a Scalar in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112.Google Scholar
  39. Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q 2l Turbulence Closure Model’, J. Atmos. Sci. 40, 91–106.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Raymond W. Arritt
    • 1
  1. 1.Cooperative Institute for Research in the Atmosphere, Colorado State UniversityFort CollinsUSA

Personalised recommendations