Skip to main content
Log in

Solar rotation, impulses of the torque in the Sun's motion, and climatic variation

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Running variance analysis and maximum entropy spectral analysis applied to Mount Wilson rotation data yield arguments in favor of a connection between variations in the Sun's rotation rate, energetic X-ray flares, and impulses of the torque (IOT) in the Sun's irregular motion about the barycenter of the planetary system. Such IOT, that have been shown to be related to the secular cycle of solar activity and excursions of the Maunder minimum type, also seem to be linked to outstanding peaks in geomagnetic activity, maxima in ozone concentration, incidence of blocking type circulation, as well as rainfall over Central Europe, England/Wales, eastern United States, and India. Statistical tests, that confirm these links, additionally point to IOT connection with temperature in Central Europe and the number of icebergs that pass south of latitude 48° N. IOT relationship with X-ray flares and strong geomagnetic storms was tested in successful long range forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A c :

Equatorial angular sidereal solar rotation rate corrected for scattered light and averaged over respective Carrington rotations.

c-events:

See JU-CM-CSc.

CM:

Center of mass of the solar system.

CS:

Center of the Sun.

ΔL :

Change of angular momentum L in the Sun's orbital motion about CM caused by an impulse of the torque (IOT). This change is measured by the time integral of the torque \(\Delta L = \int_{t_0 }^{t_1 } {T(t)dt}\).

df :

Degrees of freedom.

g-events:

See JU-CM-CSg.

IOT:

Impulse of the torque in the Sun's irregular orbital motion about the center of mass of the solar system CM. The intensity of IOT is measured by the change in angular momentum ΔL effected by the impulse.

JU-CM-CS:

Solar system constellation that is formed when the center of mass CM, the Sun's center CS and the giant planet Jupiter (JU) are in line. JU-CM-CS events initiate impulses of the torque IOT in the Sun's irregular revolution about CM.

JU-CM-CSc:

JU-CM-CS event that is accompanied with a sharp increase in orbital angular momentum and centrifugal motion of the Sun away from CM.

JU-CM-CSg:

JU-CM-CS event that goes along with a steep decrease in orbital angular momentum L and centripetal motion of the Sun toward CM due to prevailing gravitation.

L :

Angular momentum of the Sun's orbital motion around CM.

T :

Torque, the varying ‘rotary force’ applied to the Sun in its orbital motion about CM that is equal to the time rate of change of the angular momentum L.

v :

Running variance: the smoothing technique of running means over two or more consecutive readings is applied to variance, the square of the standard deviation.

References

  • Balthasar, H. and Woehl, H.: 1980, ‘Differential Rotation and Meridional Motions of Sunspots in the Years 1940–1968’, Astron. Astrophys. 92, 111–116.

    Google Scholar 

  • Balthasar, H., Vazquez, M., and Woehl, H.: 1986, ‘Differential Rotation of Sunspot Groups in the Period from 1874 through 1976 and Changes of the Rotation Velocity within the Solar Cycle’, Astron. Astrophys. 155, 87–98.

    Google Scholar 

  • Bates, J. R.: 1981, ‘A Dynamical Mechanism through which Variations in Solar Ultraviolet Radiation Can Infuence Tropospheric Climate’, Sol. Phys. 74, 399–415.

    Google Scholar 

  • Båth, M.: 1974, Spectral Analysis in Geophysics, Elsevier, Amsterdam.

    Google Scholar 

  • Baur, F.: 1975, ‘Abweichungen der Monatsmittel der Temperatur Mitteleuropas und des Niederschlags in Deutschland’, Beilage zur Berliner Wetterkarte des Inst. f. Meteorologie der FU Berlin vom 24.6.1975.

  • Bell, P. R.: 1981, ‘Variations of the Solar Constant’, NASA Conference Publication 2191.

  • Beynon, W. J. G. and Winstanley, E. H.: 1969, ‘Geomagnetic Disturbance and the Troposphere’, Nature 222, 1262–1263.

    Google Scholar 

  • Blizard, J. B.: 1969, ‘Long Range Solar Flare Prediction’, NASA Report, Contract NAS8-21436.

  • Bossolasco, M., Dagnino, I., Elena, A., and Flocchioni, G.: 1972, ‘Solar Flare Control of Thunderstorm Activity’, Institute Universitario Navale di Napoli.

  • Bucha, V.: 1983, ‘Direct Relations between Solar Activity and Atmospheric Circulation, its Effect on Changes of Weather and Climate’, Studia geoph. et geod. 27, 19–45.

    Google Scholar 

  • Burg, J. P.: 1968, ‘A New Analysis Technique for Time Series Data’, paper presented at NATO Advanced Institute of Signal Processing, Enschede.

  • Burg, J. P.: 1972, ‘The Relationship between Maximum Entropy and Maximum Likelihood Spectra’, Geophysics 37, 375–376.

    Google Scholar 

  • Burg, J. P.: 1975, ‘Maximum Entropy Analysis’, Ph.D. thesis, Stanford University, Palo Alto.

    Google Scholar 

  • Chamberlain, J. W.: 1982, ‘The Influence of Solar Ultraviolet Variability on Climate’, Planet. Space Sci. 30, 147–150.

    Google Scholar 

  • Chistyakov, V. F.: 1976, ‘The Rapid Oscillations of the Solar Rotation’, Bull. Astron. Inst. Czechoslovakia 27, 84–91.

    Google Scholar 

  • Clark, D. H., Yallop, B. D., Richard, S., and Emerson, B.: 1979, ‘Differential Solar Rotation Depends on Solar Activity’, Nature 280, 299–300.

    Google Scholar 

  • Cobb, W. E.: 1967, ‘Evidence of Solar Influence on the Atmospheric Electric Elements at Mauna Loa Observatory’, Mon. Weather Rev. 95, 905–911.

    Google Scholar 

  • Crutzen, P. J. and Solomon, S.: 1980, ‘Response of Mesospheric Ozone to Particle Precipitation’, Planet. Space Sci. 28, 1147.

    Google Scholar 

  • Currie, R. G.: 1981, ‘Evidence for 18.6 year Mn Signal in Temperature and Drought Conditions in North America since AD 1800’, J. Geophys. Res. 8, 11055–11064.

    Google Scholar 

  • Dicke, R. H.: 1964, ‘The Sun's Rotation and Relativity’, Nature 202, 432–435.

    Google Scholar 

  • Duetsch, H. U.: 1974, ‘The Ozone Distribution in the Atmosphere’, Can. J. Chem. 52, 1491–1504 (Figure 9 was adapted from a plot by H. U. Duetsch, Eidgenössische Technische Hochschule Zürich, in Rowland, F. S.: 1978, ‘Stratospheric Ozone: Earth's Fragile Shield’, 1979 Yearbook of Science and the Future, Encyclopaedia Britannica, University of Chicago).

    Google Scholar 

  • Eddy, J. A., Gilman, P. A., and Trotter, D. E.: 1977, ‘Anomalous Solar Rotation in the Early 17th Century’, Science 198, 824–829.

    Google Scholar 

  • Eddy, J. A.: 1977, ‘The Case of the Missing Sunspots’, Scient. American 236, 80–92.

    Google Scholar 

  • Eddy, J. A.: 1979, ‘A New Sun. The Solar Results from Skylab’, NASA, Washington, D.C.

    Google Scholar 

  • Eddy, J. A., ed.: 1982, ‘Solar Variability, Weather, and Climate’, National Academy Press, Washington, D.C.

    Google Scholar 

  • EOS, Transactions, American Geophysical Union: 1985, 441.

  • EOS, Transactions, American Geophysical Union: 1987, 668.

  • Fairbridge, R. W. and Hillaire-Marcel, C.: 1977, ‘An 8000-Year Paleoclimatic Record of the Double-Hale 45-Year Solar Cycle’, Nature 268, 413–416.

    Google Scholar 

  • Faure, H. and Gac, J. Y.: 1981, ‘Will the Sahelian Drought End in 1985?’, Nature 291, 475–478.

    Google Scholar 

  • Feynman, R. P., Leighton, R. B., and Sands, M.: 1966, ‘The Feynman Lectures on Physics’, Vol. 1, Addison-Wesley, Reading.

    Google Scholar 

  • Frank-Kamenetskii, D. A.: 1972, ‘Plasma: The Fourth State of Matter’, Plenum Press, New York.

    Google Scholar 

  • Gelopolsky, A.: 1933, Z. Astrophys. 7, 357.

    Google Scholar 

  • Gilman, P. A. and Howard, R.: 1984, ‘Variations in Solar Rotation with the Sunspot Cycle’, Astrophys. J. 283, 385–391.

    Google Scholar 

  • Godoli, G. and Mazzucconi, F.: 1979, ‘On the Rotation Rates of Sunspot Groups’, Sol. Phys. 64, 247–254.

    Google Scholar 

  • Gosling, J. T., Asbridge, J. R., and Bame, S. J.: 1977, ‘An Unusual Aspect of Solar Wind Speed Variations during Solar cycle 20’, J. Geophys. Res. 82, 3311–3314.

    Google Scholar 

  • Gregg, D. P.: 1984, ‘A Nonlinear Solar Cycle Model with Potential for Forecasting on a Decadal Time Scale’, Sol. Phys. 90, 185–194.

    Google Scholar 

  • Groveman, B. S. and Landsberg, H. E.: 1979, ‘Reconstruction of the Northern Hemisphere Temperature: 1579–1880’, Publ. No. 79 181/182, Department of Meteorology, University of Maryland.

  • Hale, L. C.: 1979, ‘Solar Modulation of Atmospheric Electrification and the Sun-Weather Relationship’, Nature 278, 373.

    Google Scholar 

  • Hale, L. C.: 1983, ‘Experimentally Determined Factors Influencing Electrical Coupling Mechanisms’, in McCormac, B. M. Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Heath, D. F., Krueger, A. J., and Crutzen, P. J.: 1977, ‘Solar Proton Event: Influence on Stratospheric Ozone’, Science 197, 886.

    Google Scholar 

  • Hedeman, E. R. and Dodson-Prince, H.: ‘Indications of Probable Eevels of Sunspot Numbers and Geomagnetic Disturbance in Solar Cycle 22’, in Simon, P. A., Heckman, G., and Shea, M. A.: ‘Solar-Terrestrial Predictions: Proceedings of a Workshop at Meudon, June 18–22, 1984’, National Oceanic and Atmospheric Administration, Boulder 1986, 97–98.

    Google Scholar 

  • Howard, R.: 1975, ‘The Rotation of the Sun’, Scient. American 232, 106–114.

    Google Scholar 

  • Howard, R. and EaBonte, B. J.: 1980, ‘The Sun Is Observed to Be a Torsional Oscillator with a Period of 11 Years’, Astrophys. J., Lett. 239, L33-L36.

    Google Scholar 

  • Howard, R., Adkins, J. M., Boyden, T. A., Cragg, T. A., Gregory, T. S., LaBonte, B. J., Padilla, S. P., and Webster, E.: 1983, ‘Solar Rotation Results at Mount Wilson’, Solar Physics 83, 321–338.

    Google Scholar 

  • Howard, R.: 1984, ‘Solar Rotation’, Ann. Rev. Astron. Astrophys. 22, 131–155.

    Google Scholar 

  • Jones, P. D., Wigley, T. M. E., and Kelly, P. M.: 1982, ‘Variations in Surface Air Temperatures: Part 1, Northern Hemisphere, 1881–1980’, Mon. Weather Rev. 110, 59–69.

    Google Scholar 

  • Jose, P. D.: 1965, ‘Sun's Motion and Sunspots’, Astron. J. 70, 193–200.

    Google Scholar 

  • Joselyn, J. A.: 1986, ‘SESC Methods for Short-Term Geomagnetic Predictions’, in Simon, P. A., Heckman, M. A. and Shea, M. A.: ‘Solar-Terrestrial Predictions’, National Oceanic and Atmospheric Administration, Boulder 1986, 404–414.

    Google Scholar 

  • Kadomtsev, B. B.: 1965, ‘Plasma Turbulence’, New York.

  • Keating, G. M.: 1981, ‘The Response of Ozone to Solar Activity Variations: A Review’, Sol. Phys. 74, 321–347.

    Google Scholar 

  • King, J. W.: 1974, ‘Weather and the Earth's Magnetic Field’, Nature 247, 131–134.

    Google Scholar 

  • Lamb, H. H.: 1977, ‘Climate Present, Past and Future’, Vol. 2, ‘Climatic History and the Future’, Methuen, London.

    Google Scholar 

  • Landscheidt, T.: 1976, ‘Beziehungen zwischen der Sonnenaktivität und dem Massenzentrum des Sonnensystems’, Nachrichten der Olbers-Gesellschaft 100, 2–19.

    Google Scholar 

  • Landscheidt, T.: 1980, ‘Säkularer Tiefpunkt der Sonnenaktivität - Ursache einer Kälteperiode um das Jahr 2000?’, Jahrb. d. Wittheit zu Bremen 24, 189–220.

    Google Scholar 

  • Landscheidt, T.: 1981, ‘Swinging Sun, 79-Year Cycle, and Climatic Change’, J. Interdiscipl. Cycle Res. 12, 3–19.

    Google Scholar 

  • Landscheidt, T.: 1983, ‘Solar Oscillations, Sunspot Cycles, and Climatic Change’, in B. M. Mc-Cormac, ed.: 1983, ‘Weather and Climate Responses to Solar Variations’, Colorado Associated University Press, Boulder, 293–308.

    Google Scholar 

  • Landscheidt, T.: 1984, ‘Cycles of Solar Flares and Weather’, in Moerner, N. A. and Karlén, W. (eds.), ‘Climatic Changes on a Yearly to Millenial Basis’, D. Reidel Publ. Co., Dordrecht, pp. 473–481.

    Google Scholar 

  • Landscheidt, T.: 1986a, ‘Long-Range Forecast of Energetic X-Ray Bursts Based on Cycles of Flares’, in Simon, P. A., Heckman, G., and Shea, M. A. (eds.), Solar-Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp. 81–89.

    Google Scholar 

  • Landscheidt, T.: 1986b, ‘Long Range Forecast of Sunspot Cycles’, in Simon, P. A. Heckman, G., and Shea, M. A. (eds.), Solar- Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp.48–57.

    Google Scholar 

  • Landscheidt, T.: 1987, ‘Long Range Forecasts of Solar Cycles and Climate Change’, in Sanders, J. E. and Rampino, M. R. (eds.), Climate: History, Periodicity, Predictability, Festschrift in honor of Rhodes W. Fairbridge, van Nostrand Reinhold, New York, pp. 421–445.

    Google Scholar 

  • Livingston, W. and Duvall, T. L.: 1979, ‘Solar Rotation: 1966–1978’, Sol. Phys. 61, 219–231.

    Google Scholar 

  • Manley, G.: 1974, ‘Central England Temperatures: Monthly Means 1659 to 1973’, Quart. J. Roy. Met. Soc. 100, 389–405.

    Google Scholar 

  • Markson, R.: 1979, ‘Atmospheric Electricity and the Sun-Weather Problem’, in McCormac, B. M. and Seliga, T. A., Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Markson, R.: 1983, ‘Solar Modulation of Fair-Weather and Thunderstorm Electrification and a Proposed Program to Test an Atmospheric Electrical Sun-Weather Mechanism’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Mayaud, P. N.: 1973, ‘A Hundred Year Series of Geomagnetic Data 1868–1967’, IAGA Bulletin No. 33, IUGG Publication Office, Paris.

    Google Scholar 

  • Mayaud, P. N. and Romana, A.: 1977, ‘Supplementary Geomagnetic Data 1957–1975’, IAGA Bulletin No. 39, IUGG Publication Office, Paris.

    Google Scholar 

  • Mayaud, P. N.: 1980, ‘Derivation, Meaning, and Use of Geomagnetic Data’, Geophysical Monograph 22, American Geophysical Union, Washington, D. C.

    Google Scholar 

  • Mitchell, J. M.: 1983, ‘Empirical Modelling of Effects of Solar Variability, Volcanic Events, and Carbon Dioxide on Global-Scale Average Temperature since A.D. 1880’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Mooley, D. A. and Parthasarathy, B.: 1984, ‘Fluctuations in All-India Summer Monsoon Rainfall During 1871–1978’, Climatic Change 6, 287–301.

    Google Scholar 

  • Mustel, E. R.: 1966, ‘The Influence of Solar Activity on the Troposphere in the Polar Cap Regions’, Soviet Astronomy - AJ 10, 288–294.

    Google Scholar 

  • Mustel, E. R.: 1977, ‘Solar Activity and the Troposphere’, Translation from Russian, Available from NTIS, Springfield, VA 22151, 25–52.

    Google Scholar 

  • Neubauer, L.: 1983, ‘The Sun-Weather Connection - Sudden Stratospheric Warmings Correlated with Sudden Commencements and Solar Proton Events’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder 1983, 395–397.

    Google Scholar 

  • Newell, R. E.: 1983, ‘Comments on the Boulder Solar-Terrestrial Symposium’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Perepelkin, E. J.: 1933, Z. Astrophys. 6, 121.

    Google Scholar 

  • Prohaska, J. T. and Willett, H. C.: 1983, ‘Dominant Modes of Relationship between U.S. Temperature and Geomagnetic Activity’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Activity, Colorado Associated University Press, Boulder 1983, 489–494.

    Google Scholar 

  • Recely, F. and Harvey, K. L.: 1986, ‘He I 10830 Observations of Flare Generated Coronal Holes’, in Simon, P. A., Heckman, G., and Shea, M. A. (eds.), Solar-Terrestrial Predictions, National Oceanic and Atmospheric Administration, Boulder, pp. 204–211.

    Google Scholar 

  • Roberts, W. and Olson, R. H.: 1973, J. Atmos. Sci. 30, 135.

    Google Scholar 

  • Reiter, R.: 1969, ‘Solar Flares and Their Impact on Potential Gradient and Air-Earth Current Characteristics at High Mountain Stations’, Pure Appl. Geophys. 72, 259–267.

    Google Scholar 

  • Reiter, R.: 1971, ‘Further Evidence for Impact of Solar Flares on Potential Gradient and Air- Earth Current Characteristics at High Mountain Stations’, Pure Appl. Geophys. 86, 142–158.

    Google Scholar 

  • Reiter, R.: 1979, ‘Influences of Solar Activity on the Electrical Potential between the Ionosphere and the Earth’, in McCormac, B. M. and Seliga, T. S. (eds.), Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Reiter, R.: 1983, ‘Modification of the Stratospheric Ozone Profile after Acute Solar Events’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Roble, R. G.: 1983, ‘Panel Discussion: the Reality of the Association between Solar Activity (Such as Flares) and Atmospheric Electrical Effects (Including Thunderstorms)’, directed by W. O. Roberts, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Roble, R. G.: 1985, ‘On Solar-Terrestrial Relationships in Atmospheric Electricity’, J. Geophys.Res. 90, 6000–6012.

    Google Scholar 

  • Sakurai, K.: 1974, ‘Physics of Solar Cosmic Rays’, University of Tokyo Press.

  • Sazonov, B. I.: 1965, ‘On the Solar-Troposphere Relation’, Astron. Zhurnal 42, 653–655.

    Google Scholar 

  • Sazonov, B. I.: 1974, ‘Circulation in the Troposphere and Anomaly in the Terrestrial Magnetic Field’, in Drodzdov, O. A. and Vorob'eva (eds.), General and Synoptic Climatology, Trudy, Vyp. 316, Leningrad, Glavnaja Geofiziceskaja Observatorija, 35–42.

    Google Scholar 

  • Schneider, S. H. and Mass, C.: 1975, ‘Volcanic Dust, Sunspots, and Temperature Trends’, Science 180, 741–746.

    Google Scholar 

  • Schoenwiese, C. D.: 1984, ‘Northern Hemisphere Temperature Statistics and Forcing Part B: 1579–1980 AD’, Arch. Met. Geoph. Biocl. Ser. B 35, 155–178.

    Google Scholar 

  • Schuurmans, C. J. E.: 1979, ‘Effects of Solar Flares on the Atmospheric Circulation’, in McCormac, B. M. and Seliga, T. A. (eds.), Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Schwenn, R. and Rosenbauer, H.: 1984, ‘10 Jahre Sonnenwindexperiment auf Helios 1 und 2’, in Porsche, H. (ed.), 10 Years Helios, DFVLR Oberpfaffenhofen.

  • Sidorenkov, N. S.: 1974, ‘Solar Corpuscular Fluxes and Weather on Earth’, Moscow Akademija Nauk, Priroda 3, 14–23.

    Google Scholar 

  • Smith, H. J. and Smith, E. V. P.: 1963, Solar Flares, Macmillan, New York.

    Google Scholar 

  • St. John, C. E.: 1932, Trans. IAU4, 42–44.

  • Stockton, C. W., Mitchell, J. M., and Meko, D.M.: 1983, ‘A Reappraisal of the 22-Year Drought Cycle’, in McCormac, B. M. (ed.), Weather and Climate Responses to Solar Variations, Colorado Associated University Press, Boulder.

    Google Scholar 

  • Stolov, H. L. and Shapiro, R.: 1974, ‘Investigation of the Responses of the General Circulation at 700 mb to Solar Geomagnetic Disturbance’, J. Geophys. Res. 79, 2161–2170.

    Google Scholar 

  • Storey, J.: 1932, Monthly Notices Roy. Astrom. Soc. 92, 737–741.

    Google Scholar 

  • Wilcox, J. M.: 1975, ‘SolarActivity and the Weather’, J. Atmosph. Terr. Phys. 37, 237–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landscheidt, T. Solar rotation, impulses of the torque in the Sun's motion, and climatic variation. Climatic Change 12, 265–295 (1988). https://doi.org/10.1007/BF00139433

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00139433

Keywords

Navigation