Skip to main content
Log in

Climate change and environmental pollution: Physical and biological interactions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climatic change projected over the next century may occur in an environment already affected by other stress, including UV-B enhancement, air pollution and increasing nutrient fluxes. Focusing on particular ecosystems, temperate zone forests, freshwater lakes, and estuaries, we have examined the interactions among these several environmental problems. An important chemical outcome of atmospheric change is the increase in oxidant levels throughout the lower atmosphere and the hydrosphere. These oxidants are phytotoxic and contribute directly and indirectly, along with other stresses on ecosystems, to the acceleration of the S, N and C cycles. These changes may lead to the net transfer of nutrients from land to coastal ocean with accompanying forest decline and coastal eutrophication. Some shifts already may be under way locally, but the synergistic nature of the stresses threatens to accelerate these processes over the next few decades. In addition to any direct consequences of climatic change, the aggravation of existing environmental problems is an important indirect consequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Research Council: 1983, Changing Climate, Washington, D.C., National Academey Press.

    Google Scholar 

  2. Stephens, E. R., 1985, Tropospheric Methane: Concentrations between 1963 and 1970, J. Geophys. Res. 90, 13076–80.

    Google Scholar 

  3. Weiss, R. F.: 1983, The Temporal and Spatial Distribution of Tropospheric Nitrous Oxide', J. Geoph. Res. 86, 7185–95, Khalil, M. A. K. and Rasmussen, R. A.: Increase and Seasonal Cycles of Nitrous Oxide in the Earth's Atmosphere', Tellus 35B, 161–69.

    Google Scholar 

  4. Gamlen, R. H., Lane, B. C., Midgeley, P. M., and Steed, J. M.: 1986, The Production and Release to the Atmosphere of CCl3F and CCl2FF2 (chlorofluorocarbons CFC11 and CFC12), Atmospheric Environ. 20, 1077–1085.

    Google Scholar 

  5. Stordal, F., and Isaksen, I. S. A.: 1986, ‘Ozone Perturbations due to Increases in N2O, CH4 and Chlorocarbons: Two Dimensional Time Dependent Calculations’, J. Geophys. Res. 91, 5249–5263.

    Google Scholar 

  6. Schoeberl, M. R., and Kruger, A. J.: 1986, ‘Overview of the Antarctic Ozone Depletion Issue’, Geophys. Res. Letters. 13, 1191–1192.

    Google Scholar 

  7. Solomon, S., Morent, G. H., Sanders, R. W., and Schmeltekopf, A. L.: 1987, ‘Visible spectroscopy at McMurdo Station, Antarctica. 2. Observationss of OC10’, J. Geophys Res. 92, 8339–8342.

    Google Scholar 

  8. Solomon, P. M., Parrish, A., Cannon, J., Barrett, J. W., and deZafra, R.: 1987, ‘The Altitude Profile of Chlorine Monoxide over McMurdo Station during the Antarctic Spring’, EOS. 68, 272.

    Google Scholar 

  9. Crutzen, P. J., and Arnold, F.: 1986, ‘Nitric Acid Cloud Formation in the Cold Antarctic Stratosphere: A Major Cause for the springtime ‘Ozone Hole’, Nature 324, 651–655.

    Google Scholar 

  10. Toon, O. B., Hamill, P., Turco, R.P., and Pinto, J.: 1986, ‘Condensation of HNO3 and HCl in the Winter Polar Stratospheres’, Geophys. Res. Letters. 13, 1284–1287.

    Google Scholar 

  11. Molina, M. J., Tso, T.-L., Molina, L. T., and Wang, F. C.-Y.: 1987, Science 238, 1253–1257.

    Google Scholar 

  12. Schlesinger, M. E., and Mitchell, J. F. B.: 1985, Model Projections of the Equilibrium Climate Response to Increased Carbon Dioxide, in The Potential Climatic Effects of Increasing Carbon Dioxide, MacCracken, M. C., and Luther, F. M. (eds.), U.S.D.O.E./ER-0237. Washington, D.C., U.S. Dept. of Energy, December.

    Google Scholar 

  13. Bruhl, C., and Crutzen, P. J.: 1988, ‘Scenarios of Possible Changes in Atmospheric Temperatures and Ozone Concentrations Due to Man's Activities as Estimated with a One-Dimensional Coupled Photochemical Climate Model’, Climate Dynamics (in press).

  14. Rodriquez, J. M., Ko, M. K. W., and Sze, N. D.: 1988, ‘Antarctic Chlorine Chemistry: Possible Global Implications’, Geophys. Res. Letters 15, 257–260.

    Google Scholar 

  15. Watson, R. T., Prather, J. J., and Kurylo, M. J.: 1988, Present State of Knowledge of the Upper Atmosphere 1988: An Assessment Report. NASA Reference Publication 1208.

  16. Wang, D., Bormann, F. H., and Karnosky, D. F.: 1986, ‘Regional Tree Growth Reductions Due to Ambient Ozone: Evidence from Field Experiments’, Environ. Sci. & Techn. 20, 1122–1125.

    Google Scholar 

  17. Crutzen, P. J., and Andreae, M. O.: 1985, ‘Atmospheric Chemistry’, in Malone, T. F., and Roederer, J. G. (eds.), Global Change, Cambridge, England, Cambridge University Press, pp. 75–113.

    Google Scholar 

  18. Whitten, G. Z., and Gery, M. W.: 1985, ‘Effects on Urban Smog Resulting from Changes in the Stratospheric Ozone Layer and in Global Temperature, U.S. Environmental Protection Agency. Workshop on Global Atmospheric Change and Planning, E. P. A., Raleigh, NC, Nov. 11–12.

    Google Scholar 

  19. Whitten, G. Z., private communication.

  20. Solomon, A. M., and West, D. C.: 1985, ‘Potential Responses of Forests to CO 2-Induced Climate Change’, in White, M. R. (ed.), Characterization of Information Requirements for Studies of CO 2 Effects: Water Resources, Agriculture, Forests and Human Health, U.S. D.O.E./ER-0236. Washington, D.C., U.S. Dept. of Energy, pp. 145–169.

    Google Scholar 

  21. Atmospheric Carbon Dioxide Change: Agent of Future Forest Growth or Decline, 1986. International Conference on Health and Environment Effects of Ozone Modification and Climate Change, Arlington, VA.

  22. The Major Biogeochemical Cycles And Their Interactions; 1983, Scope 21, Bolin, B. and Cook, R. B. (eds), John Wiley & Sons, N.Y.

  23. Pittock, A. B., and Nix, H. A.: 1986, ‘The Effect of Changing Climate on Australian Biomass Production - a Preliminary Study, Climate Change 8, 243–55.

    Google Scholar 

  24. Direct Effects of Increasing Carbon Dioxide on Vegetation: 1985, Strain, B. R., and Cure, J. D. (eds.), U.S.D.O.E./ER-0238. Washington, D.C., U.S. Dept. of Energy.

  25. Tomlinson, G. H.II.: 1983, ‘Air Pollutants and Forest Decline’, Environ. Sci. & Tech. 17, 246A-256A.

    Google Scholar 

  26. Johnson, A. H. and Siccama, T. G.: 1983, ‘Acid Deposition and Forest Decline’, Environ. Sci. & Tech. 17, 294A-305A.

    Google Scholar 

  27. Woodman, J. N. and Cowling, E. B.: 1987, ‘Airborne Chemicals and Forest Health’, Environ. Sci. & Tech. 21, 120–128.

    Google Scholar 

  28. U.S. Environmental Protection Agency: 1983, U.S.-Canada Memorandum of Intent on Transboundary Air Pollution, Working Group I, pp. 4.1–4.38.

  29. Hamburg, S. P., and Cogbill, C. V.: 1988, ‘Historical Decline of Red Spruce Populations and Climatic Warming’, Nature 331, 428–431.

    Google Scholar 

  30. Reich, P. B., and Amundson, R. G.: 1985, ‘Ambient Levels of Ozone Reduce Net Photosynthesis in Tree and Crop Species’, Science 230, 566–570.

    Google Scholar 

  31. Shuett, P.: 1982, ‘The Disease Picture — Different Species of Trees but Identical Symptoms’, Bild der Wissenschaft 12, 86–100.

    Google Scholar 

  32. White, K. L., Hill, A.C., and Bennett, J. H.: 1974, ‘Synergetic Inhibition of Apparent Photosynthesis Rate of Alfalfa by Combination of Sulfur Dioxide and Nitrogen Dioxide’, Environ. Sci. & Tech. 8, 574–6.

    Google Scholar 

  33. Sheffield, R. M., Cost, N. D., Bechtold, W. A., McClure, J. P.: 1985, ‘Pine Growth Reductions in the Southeast’, U.S. Dept. of Agriculture. Resource Bulletin SE-83, Southeastern Forest Expertment Station, Asheville, N.C.

    Google Scholar 

  34. Yang, Y.-S., Shelly, J. M., and Chevone, B. I.: 1982, ‘Clonal Response of Eastern White Pine to Low Doses of O3, SO2 and NO2 Singly and in Combination’, Can. J. For. Res. 17, 803–808.

    Google Scholar 

  35. Mallant, R. K. A. M., and Salina, J.: 1985, Experiments on H 2O2-containing Fog Exposures of Young Trees. Symposium on Aerosols, Williamsburg, VA. May 19–24.

  36. Fowler, D. J., Cape, J. N., Nicolso, J. A., Kinnaird, J. W., and Paterson, I. S.: 1980, ‘The Influence of a Polluted Atmosphere on Cuticle Degradation in Scots Pine (pinus sylvestris)’. Proc. Intl. Conf. Ecol. Impacts Acid Precip., Drablos, D. and Tollan, A. (eds.), SNSF project, Oslo, March 11–14.

    Google Scholar 

  37. Paces, T.: 1985, ‘Sources of Acidification in Central Europe Estimated from Elemental Budgets in Small Basins’, Nature 315, 31–36.

    Google Scholar 

  38. Tomlinson, G. H. II.: 1981, Dieback of Forests — Continuing Observations, May and June, 1981, Research Center, Senneterre, Quebec.

    Google Scholar 

  39. Warrick, A. R., Gifford, R. M., and Poppy, M. C.: 1986, ‘CO2, Climate Change and Agirculture’, in Robin, Warwick, Doos and Jager (eds.), The Greenhouse Effect, Climate Change and Ecosystems, John Wiley & Sons, N.Y., pp. 393–474.

    Google Scholar 

  40. Caldwell, M. M.: 1979, ‘Plant Life and Ultraviolet Radiation: Some Perspective in the History of the Earth's UV Climate’, BioScience 29, 520–525; Proceedings of the International Workshop on the Effects of Ultraviolet Radiation on Plants, Bjorn, L. O., and Bormon, J. F. (eds.): 1983, Physiologic Planetarium 58, 349–450.

    Google Scholar 

  41. Teramura, A. H.: 1986, Overview of Our Current State of Knowledge of UV Effects on Plants, Intl. Conf. Health Environ. Effects of Ozone Modification and Climate Change, Arlington, VA, 16–20 June.

  42. Op. Cit. The Major Biogeochemical Cycles And Their Interactions; 1983, Scope 21, Bolin, B. and Cook, R. B. (eds), John Wiley & Sons, N.Y., Ch. 6.

  43. Bloxam, R. M., Hornbeck, J. W., and Marten, C.W.: 1984, ‘The Influence of Storm Characteristics on Sulfate in Precipitation’, Water, Air, and Soil Pollution 23, 359–74.

    Google Scholar 

  44. Reuss, J. O.: 1980, ‘Simulation of Soil Nutrient Losses Resulting from Rainfall Acidity’, Ecological Modeling 11, 15–38.

    Google Scholar 

  45. Tirpak, D. A.: 1986, Linkages between Global Climate Change and Acid Rain, U.S. Environmental Protection Agency, 600/9-86/016.

  46. Schindler, D. W., Turner, M. A., Stainton, M. P., and Linsey, G. A.: 1986, ‘Natural Sources of Acid Neutralizing Capacity in Low Alkalinity Lakes of the Precambrian Shield’, Science 232, 844–847.

    Google Scholar 

  47. Berner, R. A., and Westrich, J. T.: 1985, ‘Bioturbation and the Early Diagnosis of Carbon and Sulfur’, Am. J. Sci. 285, 193–206.

    Google Scholar 

  48. The Global Biogeochemical Sulfur Cycle: 1983, Ivanov, M. V., and Freney, J. R. (eds.), New York, John Wiley & Sons.

  49. Cooper, W. J., and Zika, R. G.: 1983, ‘Photochemical Formation of Hydrogen Peroxide in Surface and Groundwaters Exposed to Sunlight’, Science 220, 711–712.

    Google Scholar 

  50. Acid Rain and Transported Air Pollutants: Implications for Public Policy: 1984, Washington, D.C., U.S. Congress, Office of Technology Assessment.

  51. Characteristics of Lakes in the Eastern United States, U.S. E.P.A., June 1986.

  52. Op. Cit. The Major Biogeochemical Cycles And Their Interactions; 1983, Scope 21, Bolin, B. and Cook, R. B. (eds), John Wiley & Sons, N.Y., Ch. 12.

  53. Boynton, W. R., Kemp, W. M., and Keefe, C. W.: 1982, ‘A Comparative Analysis of Nutrients and other Factors Influencing Estvarine Phytoplankton Production’, in Kennedy, V. S. (ed.), Estvarine Comparisons, New York, Academic Press.

    Google Scholar 

  54. Skulberg, O. M., Codd, G. A., and Carmichael, W. W.: 1984, ‘Toxic Blue-Green Algae Blooms in Europe: A Growing Problem’, Ambio 13, 244–247.

    Google Scholar 

  55. Fisher, D., Ceraso, J., Mathew, T. and Oppenheimer, M.: 1988, Polluted Coastal Waters: The Role Of Acid Rain, Environmental Defense Fund, New York.

    Google Scholar 

  56. Lancelot, C., Billen, G., Sournia, A., Weisse, T., Colijn, F., Veldhuis, M. J. W., Davies, A., and Wassman, P.: 1987, ‘Phaeocystic Blooms and Nutrient Enrichment in the Continental Coastal Zones of the North Sea’, Ambio 16, 38–46.

    Google Scholar 

  57. Op. Cit. The Major Biogeochemical Cycles And Their Interactions; 1983, Scope 21, Bolin, B. and Cook, R. B. (eds), John Wiley & Sons, N.Y., Ch. 14.

  58. Op. Cit.National Research Council: 1983, Changing Climate, Washington, D.C., National Academey Press; Vitousek, P. M., and Matson, P. A.: 1984, 'Mechanisms of Nitrogen Retention in Forest Ecosystems: A Field Experiment, Science 225, 51–52.

  59. Likens, G. E.: 1985, ‘An Experimental Approach for the Study of Ecosystems’, Journal of Ecology 73, 381–396.

    Google Scholar 

  60. Bowden, W. B., and Bormann, F. H.: 1986, Transport and Loss of Nitrous Oxide in Soil Water After Forest Clear-Cutting. Science 233, 867–69.

    Google Scholar 

  61. Op. Cit., The Major Biogeochemical Cycles And Their Interactions; 1983, Scope 21, Bolin, B. and Cook, R. B. (eds), John Wiley & Sons, N.Y., Ch.7.

  62. Jaeger, J.: 1988, Developing Policies For Responding To Climatic Change, Stockholm, Sweden. World Meteorological Organization and United Nations Environment Programme.

    Google Scholar 

  63. Hollings, S.: 1985, ‘Resilence of Ecosystems: Local Surprise and Global Change’, in Malone, T. F., and Roederer, J. G. (eds.), Global Change, Cambridge, England, Cambridge University Press, pp. 228–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheimer, M. Climate change and environmental pollution: Physical and biological interactions. Climatic Change 15, 255–270 (1989). https://doi.org/10.1007/BF00138854

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00138854

Keywords

Navigation