Skip to main content
Log in

Characterization of porous media - pore level

  • Review Article
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pore size and pore size distribution are defined, 1-D pore structure models, 2-D and 3-D network models of pore structure are reviewed. Simulation of capillary pressure and relative permeability curves with the help of network models of pore structure is discussed. Pore structure determination from serial sections is outlined. Phase immobilization technique is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Klinkenberg, L.J. (1957) ‘Pore size distribution of porous media and displacement experiments with miscible liquids’, Pet. Trans. Am. Inst. Min. Eng. 210, 366.

    Google Scholar 

  2. Dullien, F.A.L. (1979) Porous Media: Fluid Transport and Pore Structure, Academic Press, New York.

    Google Scholar 

  3. Carman, P.C. (1941) ‘Capillary rise and capillary movement of moisture in fine sands’, Soil Sci. 52, 1.

    Google Scholar 

  4. Fatt, I. (1956) ‘The network model of porous media I. Capillary pressure characteristics’, Pet. Trans. AIME 209, 114.

    Google Scholar 

  5. Fatt, I. (1956) ‘The network model of porous media II. Dynamic properties of singe size tube network’, Pet. Trans. AIME 207, 160.

    Google Scholar 

  6. Fatt, I. (1956) ‘The network model of porous media III. Dynamic properties of networks with tube radius distribution’, Pet. Trans. AIME 207, 164.

    Google Scholar 

  7. Simon, R. and Kelsey, F.J. (1971) ‘The use of capillary tube networks in reservoir performance studies: I. Equal-viscosity miscible displacements’, Soc. Petroleum Engrs. J. 11, 99.

    Google Scholar 

  8. Simon, R. and Kelsey, F.J. (1972) ‘The use of capillary tube networks in reservoir performance studies: II. Effect of heterogeneity and mobility on miscible displacement efficiency’, Soc. Petroleum Engrs. J. 12, 345.

    Google Scholar 

  9. Broadbent, S.R. and Hammersley (1957) ‘Percolation processes. I. Crystals and Mazes’, Proc. Cambridge Phil. Soc. 53, 629.

    Google Scholar 

  10. Shante, V.K.S. and Kirkpatrick, S. (1971) ‘An introduction to percolation theory’, Adv. Phys. 42, 385.

    Google Scholar 

  11. Kirkpatrick, S. (1973) ‘Percolation and conduction’, Rev. Math. Phys. 45, 574.

    Google Scholar 

  12. Chatzis, I. and Dullien, F.A.L. (1977) ‘Modeling pore structure by 2-D and 3-D networks with application to sandstones’, J. of Can. Petr. T. 16, 97.

    Google Scholar 

  13. Chatzis, I. and Dullien, F.A.L. (1978) ‘A network approach to analyze and model capillary and transport phenomena in porous media’, Proceedings of the IAHR Symposium “Scale Effects in Porous Media” held in Thessaloniki, Greece, Aug. 29–Sept. 1.

  14. Chatzis, I. and Dullien, F.A.L. (1985) ‘The modelling of mercury porosimetry and the relative permeability of mercury in sandstones using percolation theory’, I.C.E. 25, 1, 47.

    Google Scholar 

  15. Wardlaw, N.C. (1976) ‘Pore geometry of carbonate rocks as revealed by pore casts and capillary pressure’, Am. Ass. Pet. G. Bull 60 (2), 245.

    Google Scholar 

  16. Diaz, C.E., Chatzis, I., and Dullien, F.A.L. (1987) ‘Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network’, Transport in Porous Media 2, 215.

    Google Scholar 

  17. Lenormand, R. and Zarcone, C. (1984) ‘Role of roughness and edges during imbibition in square capillaries’, SPE 13264. Paper presented at the 59th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, held in Houston, TX, Sept. 16–19.

  18. Li, Y. and Wardlaw, N.C. (1986) ‘Mechanisms of nonwetting phase trapping during imbibition at slow rates’, J. Colloid Interface Sci. 109, 473.

    Google Scholar 

  19. Chatzis, I. and Dullien, F.A.L. (1983) ‘Dynamic immiscible displacement mechanisms in pore doublets: Theory versus experiment’, J. Colloid Interface Sci. 91, 199.

    Google Scholar 

  20. Dullien, F.A.L., Lai, F.S.Y., and Macdonald, I.F. (1986) ‘Hydraulic continuity of residual wetting phase in porous media’, J. Colloid Interface Sci. 109, 201.

    Google Scholar 

  21. Dullien, F.A.L., Zarcone, C., Macdonald, I.F., Collins, A., and Bochard, R.D.E. (1989) ‘The effects of surface roughness on the capillary pressure curves and the heights of capillary rise in glass bead packs’, J. Colloid Interface Sci. 127, 362.

    Google Scholar 

  22. Kantzas, A. and Chatzis, I. (1988) ‘Network simulation of relative permeability curves using a bond correlated-site percolation model of pore structure’, Chem. Eng. Comm. 69, 191.

    Google Scholar 

  23. Kantzas, A. and Chatzis, I. (1988) ‘Application of the preconditioned conjugate gradient method in the simulation of relative permeability properties of porous media’, Chem. Eng. Comm. 69, 169.

    Google Scholar 

  24. Shankar, P.K. and Dullien, F.A.L. (1981) ‘Experimental investigation of two-liquid relative permeability and dye adsorption capacity versus saturation relationships in water-wet and dry-film-treated sandstone samples’, in D.O. Shah (ed.), 3rd International Conference on Surface and Colloid Science: Surface Phenomena in Enhanced Oil Recovery, Plenum Press.

  25. Winterfeld, P.H., Scriven, L.E., and Davis, H.T. (1981) ‘Percolation and conductivity of random two-dimensional composites’, J. Phys. Chem. 14, 2361.

    Google Scholar 

  26. Chandler, R., Koplik, J., Lerman, K., and Willemsen, J.F. (1982) ‘Capillary displacement and percolation in porous media’, J. Fluid Mec. 119, 249.

    Google Scholar 

  27. Mohanty, K.K. and Salter, S.J. (1982) ‘Flow in porous media II. Pore level modeling’, SPE paper no. 11018, presented at the 57th Annual Fall Technical Conference and Exhibition of SPE of AIME held in New Orleans, LA (Sept. 26–29).

  28. Wilkinson, D. and Willemsen, J.F. (1983) ‘Invasion percolation: A new form of percolation theory’, J. Phys. A: Math Gen. 16, 3365.

    Google Scholar 

  29. Heiba, A.A., Sahimi, M., Scriven, L.E., Davis, H.T. (1982) ‘Percolation theory of two phase relative permeability’, SPE Paper No. 11015, presented at the 57th Annual Fall Technical Conference of SPE-AIME, New Orleans, (Sept. 26–29).

  30. Larson, R.G., Scriven, L.E., and Davis, H.T. (1981) ‘Percolation theory of two phase flow in porous media’, Chem. Engng. Sci. 36, 75.

    Google Scholar 

  31. Koplik, J., Lin, C., and Vermette, M. (1984) ‘Conductivity and permeability from microgeometry’, J. Appl. Phys. 56, 3127.

    Google Scholar 

  32. Guyon, E., Hulin, J.P., and Lenormand, R. (1984) ‘Application de la percolation à la physique des milieux poreux’, Annales des Mines, mai–juin, p. 17.

  33. Wilkinson, D. and Barsony, M. (1984) ‘Monte Carlo study of invasion percolation clusters in two and three dimensions’, J. Phys. A: Math. Gen. 17, L129.

    Google Scholar 

  34. Wilkinson, D. (1984) ‘Percolation model of immiscible displacement in the presence of buoyancy forces’, Physical Review A 30, 520.

    Google Scholar 

  35. Wilkinson, D. (1986) ‘Percolation effects in immiscible displacement’, Physical Review A 34, 1380.

    Google Scholar 

  36. Dias, M.M. and Wilkinson, D. (1986) ‘Percolation with trapping’, J. Phys. A 19, 3131.

    Google Scholar 

  37. de Arcangelis, L., Koplik, J., Redner, S., and Wilkinson, D. (1986) ‘Hydrodynamic dispersion in network models of porous media’, Physical Review Letters 57, 996.

    Google Scholar 

  38. Li, Y., Laidlaw, W.G., and Wardlaw, N.C. (1986) ‘Sensitivity of drainage and imbibition to pore structures as revealed by computer simulation of displacement process’, Advances in Colloid and Interface Sci. 26, 1.

    Google Scholar 

  39. Lenormand, R., Touboul, E., and Zarcone, C. (1988) ‘Numerical models and experiments on immiscible displacements in porous media’, J. Fluid Mech. 189, 165.

    Google Scholar 

  40. Fischmeister, H.F. (1974) ‘Pore structure and properties of materials’, in Proc. Int. Symp. RILEM/UPAC, Prague, September 18–21, 1973, Part II, C435, Academic, Prague.

    Google Scholar 

  41. DeHoff, R.T. and Rhines, F.N. (eds.) (1968) Quantitative Microscopy, McGraw-Hill Book Co., N.Y.

    Google Scholar 

  42. DeHoff, R.T., Aigeltinger, E.H., and Craig, K.R. (1972) ‘Experimental determination of the topological properties of three-dimensional micro-structures’, J. Microsc. 95, 69.

    Google Scholar 

  43. DeHoff, R.T. (1983) ‘Quantitative serial sectioning analysis: Preview’, J. Microsc. 131, 259.

    Google Scholar 

  44. Pathak, P., Davis, H.T., and Scriven, L.E. (1982) ‘Dependence of residual nonwetting liquid on pore topology’, SPE Preprint 11016, 57th Annual SPE Conf., New Orleans.

  45. Lin, C. and Cohen, M.H. (1982) ‘Quantitative methods for microgeometric modeling’, J. Appl. Phys. 53, 4152.

    Google Scholar 

  46. Lin, C. and Perry, M.J. (1982) ‘Shape description using surface triangularization’, Proc. IEEE Workshop on Computer Visualization, N.H.

  47. Kaufmann, P.M., Dullien, F.A.L., Macdonald, I.F., and Simpson, C.S. (1983) ‘Reconstruction, visualization and topological analysis of sandstone pore structure’, Acta Stereol. 2 (Suppl. I), 145.

    Google Scholar 

  48. Macdonald, I.F., Kaufmann, P., and Dullien, F.A.L. (1986) ‘Quantitative image analysis of finite porous media. I. Development of genus and pore map software’ J. Microsc. 144, 277; ‘II. Specific genus of cubic lattice models and Berea sandstone’, ibid.J. Microsc. 297.

    Google Scholar 

  49. Barrett, L.K. and Yust, C.S. (1970) ‘Some fundamental ideas in topology and their application to problems in metallography’, Metallography 3, 1.

    Google Scholar 

  50. Yanuka, M., Dullien, F.A.L., and Elrick, D.E. (1986) ‘Percolation processes and porous media. I. Geometrical and topological model of porous media using a three-dimensional joint pore size distribution’, J. Colloid Interface Sci. 112, 24.

    Google Scholar 

  51. Ridgway, H.L. and Tarbuk, K.J., (1967) ‘The random packing of spheres’, Brit. Chem. Eng. 12, 384.

    Google Scholar 

  52. Kruyer, S. (1958) ‘The penetration of mercury and capillary condensation in packed spheres’, Trans. Faraday Soc. 54, 1758.

    Google Scholar 

  53. Lin, C. (1983) ‘Shape and texture from serial contours’, J. Intl. Assoc. Math. Geol. 15, 617.

    Google Scholar 

  54. Kwiecien, M.J. (1987) ‘Determination of pore size distributions of Berea sandstone through three-dimensional reconstruction’, M.A.Sc. Thesis, University of Waterloo.

  55. Kwiecien, M.J., Macdonald, I.F., and Dullien, F.A.L. ‘Three-dimensional reconstruction of porous media from serial section data’, submitted to J. Microsc.

  56. Yadav, G.D., Dullien, F.A.L., Chatzis, I., and Macdonald, I.F.(1987) ‘Microscopic distribution of wetting and nonwetting phases during immiscible displacement’, SPE Reservoir Engng. 2, 137.

    Google Scholar 

  57. Yuan, H.H. and Swanson, B.F. (1989) ‘Resolving pore-space characteristics by rate-controlled porosimetry’, SPE Formation Evaluation 4, 17.

    Google Scholar 

  58. Dullien, F.A.L. (1975) ‘New permeability model of porous media’, AIChE J. 21, 299.

    Google Scholar 

  59. van Brakel, J. (1975) ‘Pore space models for transport phenomena in porous media. Review and evaluation with special emphasis on capillary liquid transport’, Powder Techn. 11, 205.

    Google Scholar 

  60. van Brakel, J. and Heertjes, P.M. (1977) ‘Capillary rise in porous media. Part I: A problem’, Powder Techn. 16; ‘Part II: Secondary phenomena’, Ibid. Powder Techn. 16, 83; ‘Part III: Role of the contact angle’, Ibid. Powder Techn. 16, 91.

  61. Quiblier, J.A. (1984) ‘A new three-dimensional modeling technique for studying porous media’, J. Colloid Interface Sci. 98, 84.

    Google Scholar 

  62. Dullien, F.A.L. (1988) ‘Two-phase flow in porous media’, Chem. Eng. Technol. 11, 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dullien, F.A.L. Characterization of porous media - pore level. Transp Porous Med 6, 581–606 (1991). https://doi.org/10.1007/BF00137851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00137851

Key words

Navigation