Skip to main content
Log in

Spectral geometry for Riemannian foliations

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let F be a Riemannian foliation on a Riemannian manifold (M, g), with bundle-like metric g. Aside from the Laplacian △g associated to the metric g, there is another differential operator, the Jacobi operator J▽, which is a second order elliptic operator acting on sections of the normal bundle. Its spectrum is discrete as a consequence of the compactness of M. Hence one has two spectra, spec (M, g) = spectrum of △g (acting on functions), and spec (F, J▽) = spectrum of J▽. We discuss the following problem: Which geometric properties of a Riemannian foliation F on a Riemannian manifold (M, g) are determined by the two types of spectral invariants?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.; Gauduchon, P.; Mazet, E.: Le spectre d'une variété riemannienne. Lecture Notes in Mathematics 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

    Google Scholar 

  2. Bérard, P. H.: Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics 1207, Springer-Verlag, Berlin, Heidelberg, New York, 1986.

    Google Scholar 

  3. Besse, A.L.: Einstein manifolds. Ergeb. Math. Grenzgeb. 3, Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.

    Google Scholar 

  4. Chen, B. Y.; Vanhecke, L.: Differential geometry of geodesic spheres. J. Reine Angew. Math. 325 (1981), 28–67.

    Google Scholar 

  5. Donelly, H.: Spectral invariants of the second variation operator. Illinois J. Math. 21 (1977), 185–189.

    Google Scholar 

  6. Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Publish or Perish, 1984.

  7. Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715–737.

    Google Scholar 

  8. Gromoll, D.; Grove, K.: One-dimensional metric foliations in constant curvature spaces. Differential Geometry and Complex Analysis, H.E. Rauch memorial volume. Springer-Verlag, Berlin, Heidelberg, New York, 1985, 165–168.

    Google Scholar 

  9. Gray, A.; Vanhecke, L.: Riemannian geometry as determined by the volumes of small geodesic balls. Acta. Math. 142 (1979), 157–198.

    Google Scholar 

  10. Gray, A.; Vanhecke, L.: The volume of tubes about curves in a Riemannian manifold. London Math. Soc. 44 (1982), 215–243.

    Google Scholar 

  11. Hasegawa, T.: Spectral geometry of closed minimal submanifolds in a space form, real and complex. Kodai Math. 31 (1980), 224–252.

    Google Scholar 

  12. Kamber, F.; Tondeur, Ph.: Harmonic foliations. In: Proc. NSF Conference on Harmonic Maps, Tulane, Dec. 1980.Lecture Notes in Mathematics 949, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 87–121.

    Google Scholar 

  13. Kamber, F.; Tondeur, Ph.: Infinitesimal automorphisms and second variation of the energy for harmonic foliations. Tôhoku Math. J. 34 (1982), 525–538.

    Google Scholar 

  14. Milnor, J.: Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci., U.S.A. 51 (1964), 542.

    Google Scholar 

  15. Nishikawa, S.; Tondeur, Ph.: Transversal infinitesimal automorphisms for harmonic Käher foliations. Tôhoku Math. J. 40 (1988), 599–611.

    Google Scholar 

  16. O'Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459–469.

    Google Scholar 

  17. Patodi, V.K.: Curvature and the fundamental solution of the heat operator. J. Indian Math. Soc. 34 (1970), 269–285.

    Google Scholar 

  18. Ranjan, A.; Structural equations and an integral formula for foliated manifolds. Geom. Dedicata 20 (1986), 85–91.

    Google Scholar 

  19. Reinhart, B.L.: Foliated manifolds with bundle-like metrics. Ann. of Math. 69 (1959), 119–132.

    Google Scholar 

  20. Reinhart, B.L.: Differential geometry of foliations. Ergeb. Math. Grenzgeb. 99, Springer-Verlag, Berlin, Heidelberg, New York, 1983.

    Google Scholar 

  21. Singer, I.M.; Thorpe, J.A.: The curvature of 4-dimensional Einstein spaces. In: Global Analysis, papers in honor of K. Kodaira. Univ. of Tokyo Press, 1969, 355–365.

  22. Tanno, S.: Eigenvalues of the Laplacian of Riemannian manifolds. Tôhoku Math. J. 25 (1973), 391–403.

    Google Scholar 

  23. Tondeur, Ph.: Foliations on Riemannian manifolds. Universitext, Springer-Verlag, Berlin, Heidelberg, New York, 1988.

    Google Scholar 

  24. Tricerri, F.; Vanhecke, L.: Curvature tensors on almost Hermitian manifolds. Trans. Amer. Math. Soc. 267 (1981), 365–398.

    Google Scholar 

  25. Urakawa, H.: Stability of harmonic maps and eigenvalues of the Laplacian. Trans. Amer. Math. Soc. 301 (1987), 557–589.

    Google Scholar 

  26. Urakawa, H.: Spectral geometry and the second variation operator of harmonic maps. Illinois J. Math. 33 (1989), 250–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Ruh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nhikawa, S., Tondeur, P. & Vanhecke, L. Spectral geometry for Riemannian foliations. Ann Glob Anal Geom 10, 291–304 (1992). https://doi.org/10.1007/BF00136871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00136871

Key words

Navigation