Skip to main content
Log in

Reaction products distribution between square-planar gold(III) complexes and N,N,N′,N′-tetramethylthiuram disulfide. Crystal structure of bis(N,N-dimethyldithiocarbamato)gold(III) bromide dihydrate, [Au(Me2NCS2)2]Br·2H2O

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The reactions of N,N,N′,N′-tetramethylthiuram disulfide (tmtds) with gold(III) complexes of the [Au(L)X3] type [L = N-methylimidazole (N-Melm), 2-methylbenzoxazole (2-MeBO) and 2,5-dimethylbenzoxazole (2,5-diMeBO), X = Cl, Br or I] are reported, and yielded two main types of product - [Au(Me2dtc)X2] (A) and [Au(Me2dtc)2]X (B) (Me2dtc = N,N-dimethyldithiocarbamato anion). The ratio of the product yields (B/A) depends upon the nature of the ligand (L) and halogen (X). The ratio B/A for the reaction: [Au(L)Cl3] + tmtds = A + B, increases in the sequence N-MeIm < 2- MeBO < 2,5-diMeBO, which correlates well with the level of cytotoxic activity exhibited by the [Au(L)Cl3] complexes. A and B were characterized by their i.r., u.v-vis. and 1-n.m.r. spectra. The magnetic measurements were also recorded. The data support a squareplanar geometry for gold(III) complexes with the Me2dtc ligand bonded in a bidentate fashion; a conjecture has been verified crystallographically for [Au(Me2NCS2)2]-Br·2H2O. The X-ray analysis confirmed that the complex is composed of ionic units: [Au(Me2dtc)2] + and Br and H2O molecules. The Au—S distances are markedly similar, falling in the 2.343(4)–2.350(3) ∘A range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Dyadchenko, Usp. Khim., 51, 467 (1982).

    Google Scholar 

  2. K. I. Grandberg, Usp. Khim., 51, 438 (1982).

    Google Scholar 

  3. V. P. Dyadchenko, K. I. Grandberg, O. N. Kalinina, P. E. Krasik, O. Yu Burtseva, M. A. Porai-Koshits, L. G. Kuz'mina and E. G. Perevalova, Metallorg. Khim., 3, 667 (1990).

    Google Scholar 

  4. S. Åkerström, Ark. Kemi, 14, 387 (1959); P. T. Beurskens, J. A. Cras and J. J. Steggerda, Inorg. Chem., 7, 810 (1968).

    Google Scholar 

  5. P. T. Beurskens, J. A. Cras and J. G. M. van der Linden, Inorg. Chem., 9, 475 (1970).

    Google Scholar 

  6. F. Forghieri, C. Preti, L. Tassi and G. Tosi, Polyhedron, 7, 1231 (1988).

    Google Scholar 

  7. J. A. Cras and J. Willemse, Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987, Vol. 2, p. 591; and refs cited therein.

    Google Scholar 

  8. J. A. McCleverty and N. J. Morrison, J. Chem. Soc., Dalton Trans., 2169 (1976); J. A. McCleverty, S. Gill, R. S. Z. Kowalski, N. A. Bailey, H. Adams, K. W. Lumbard and M. A. Murphy, J. Chem. Soc., Dalton Trans., 493 (1982).

  9. R. A. Bulman, Struct. Bonding (Berlin), 67, 91 (1987).

    Google Scholar 

  10. M. Massacesi, R. Pinna, G. Ponticelli and G. Puggioni, J. Inorg. Biochem., 29, 95 (1987).

    Google Scholar 

  11. G. Floris, A. Padiglia, G. Ponticelli and G. Puggioni, Transition Met. Chem., 17, 145 (1992).

    Google Scholar 

  12. M. Massacesi, Z. D. Matović and G. Ponticelli, Farmaco, 48, 1327 (1993).

    Google Scholar 

  13. I. A. Efimenko, A. P. Kurbakova, Z. D. Matović and G. Ponticelli, Transition Met. Chem., 19, 539 (1994).

    Google Scholar 

  14. I. A. Efimenko, A. P. Kurbakova, Z. D. Matović and G. Ponticelli, Transition Met. Chem., 19, 640 (1994).

    Google Scholar 

  15. Z. D. Matović, D. J. Radanović, G. Ponticelli, P. Scano and I. A. Efimenko, Transition Met. Chem., 19, 461 (1994).

    Google Scholar 

  16. D. J. Radanović, Z. D. Matović, G. Ponticelli, P. Scano and I. A. Efimenko, Transition Met. Chem., 19, 646 (1994).

    Google Scholar 

  17. F. Cosu, Z. D. Matović, D. J. Radanović and G. Ponticelli, Farmaco, 49, 301 (1994).

    Google Scholar 

  18. G. Ponticelli, F. Cossu and Z. D. Matović, Fourth Int. Symp. Comb. Therapies, Cagliari, Italy, 1994, p. 104.

  19. N. A. Malik, G. Otiko and P. J. Sadler, J. Inorg. Biochem., 12, 317 (1980)

    Google Scholar 

  20. A. A. Isab, A. L. Hormann, D. T. Hill, D. E. Griswold, M. J. DiMartino and C. F. Shaw III, Inorg. Chem., 28, 1321 (1989).

    Google Scholar 

  21. S. Wang and J. P. Fackler Jr, Inorg. Chem., 29, 4404 (1990).

    Google Scholar 

  22. C. F. Shaw III, Inorg. Persp. Biol. Med., 2, 344 (1979).

    Google Scholar 

  23. R. J. Puddephatt, The Chemistry of Gold, Elsevier, New York, 1978

    Google Scholar 

  24. I. Haiduc and C. Silvestru, Coord. Chem. Rev., 99, 253 (1990)

    Google Scholar 

  25. P. J. Sadler, Struct. Bonding (Berlin), 28, 171 (1978).

    Google Scholar 

  26. F. Ugozzoli, Absorb, A Program for Walker and Stuart's Absorption Correction, University of Parma, 1983.

  27. International Tables for X-ray Crystallography, Kynoch Press, Birmingham, UK, 1974, Vol. 4.

  28. G. M. Sheldrick, SHELX86, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1986.

    Google Scholar 

  29. G. M. Sheldrick, SHELX92, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1992.

    Google Scholar 

  30. C. K. Johnson, ORTEP, Rep. ORNL-3794, Oak Ridge, TN, USA, 1965.

  31. M. Nardelli, Comput. Chem., 7, 95 (1983).

    Google Scholar 

  32. F. A. Cotton and J. A. McCleverty, Inorg. Chem.,3, 1398 (1964).

    Google Scholar 

  33. E. W. Ainscough and A. M. Brodie, J. Chem. Soc., Dalton Trans., 565 (1977).

  34. G. V. Boyd, Comprehensive Heterocyclic Chemistry, Pergamon Press, Oxford, 1984, Vol. 6, p. 191.

    Google Scholar 

  35. H. J. A. Blaauw, R. J. F. Nivard and G. J. M. van der Kerk, J. Organometal. Chem., 2, 236 (1964).

    Google Scholar 

  36. J. J. Criado, J. A. Lopez-Arias, B. Macias, L. R. Fernandez-Lago and J. M. Salas, Inorg. Chim. Acta, 193, 229 (1992).

    Google Scholar 

  37. P. T. Beurskens, H. J. A. Blaauw, J. A. Cras and J. J. Steggerda, Inorg. Chem., 7, 805 (1968).

    Google Scholar 

  38. D. A. Brown, W. K. Glass and M. A. Burke, Spectrochim. Acta, 32, 137 (1976).

    Google Scholar 

  39. J. R. Ferraro, Low-frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971.

    Google Scholar 

  40. W. R. Mason and H. B. Gray, J. Am. Chem. Soc., 90, 5721 (1968); W. R. Mason and H. B. Gray, Inorg. Chem., 7, 55 (1968).

    Google Scholar 

  41. J. H. Noordik, Cryst. Struct. Commun., 2, 81 (1973).

    Google Scholar 

  42. M. Hong, Z. Huang, X. Lei, F. Jiang and H. Liu, Acta Crystallogr., Sect. C, 48, 1101 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radanović, D.J., Matović, Z.D., Miletić, V.D. et al. Reaction products distribution between square-planar gold(III) complexes and N,N,N′,N′-tetramethylthiuram disulfide. Crystal structure of bis(N,N-dimethyldithiocarbamato)gold(III) bromide dihydrate, [Au(Me2NCS2)2]Br·2H2O. Transition Met Chem 21, 169–175 (1996). https://doi.org/10.1007/BF00136550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00136550

Keywords

Navigation