Skip to main content
Log in

A proposal for the molecular basis of μ and δ opiate receptor differentiation based on modeling of two types of cyclic enkephalins and a narcotic alkaloid

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The molecular basis underlying the divergent receptor selectivity of two cyclic opioid peptides Tyr-c[N δ-d-Orn2-Gly-Phe-Leu-] (c-ORN) and [d-Pen2, l-Cys5]-enkephalinamide (c-PEN) was investigated using a molecular modeling approach. Ring closure and conformational searching procedures were used to determine low-energy cyclic backbone conformers. Following reinsertion of amino acid side chains, the narcotic alkaloid 7α-[(1R)-1-methyl-1-hydroxy-3-phenylpropyl]-6,14-endoethenotetrahydro oripavine (PEO) was used as a flexible template for bimolecular superpositions with each of the determined peptide ring conformers using the coplanarity and cocentricity of the phenolic rings as the minimum constraint. A vector space of PEO, accounting for all possible orientations for the C21-aromatic ring of PEO served as a geometrical locus for the aromatic ring of the Phe4 residue in the opioid peptides. Although a vast number of polypeptide conformations satisfied the criteria of the opiate pharmacophore, they could be grouped into three classes differing in magnitude and sign of the torsional angle values of the tyrosyl side chain. Only class III conformers for both c-ORN and c-PEN, having tyramine dihedral angles χ1 =−150° ± 30° and χ2=−155° ± 20°, had significant structural and conformational properties that were mutually compatible while respecting the PEO vector space. Comparison of these properties in the context of the divergent receptor selectivity of the studied opioid peptides suggests that the increased distortion of the peptide backbone in the closure region of c-PEN together with the pendant β,β-dimethyl group, combine to generate a steric volume which is absent in c-ORN and that may be incompatible with a restrictive topography of the μ receptor. The nature and stereo-chemistry of substituents adjacent to the closure region of the peptides could also modulate receptor selection by interacting with a charged (δ) or neutral (μ) subsite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A preliminary report of this work was presented at the American Crystallographic Association Annual Meeting, Philadelphia, June 26–July 1, 1988.

  2. Simon, E.J., Hiller, J.M. and Edelman, I., Proc. Natl. Acad. Sci. U.S.A., 70 (1973) 1947.

    Google Scholar 

  3. Pert, C.B. and Snyder, S.H., Science, 179 (1973) 1011.

    Google Scholar 

  4. Goldstein, A., Science, 193 (1976) 1081.

    Google Scholar 

  5. Chang, K.J., Hazum, E. and Cuatrecasas, P., Proc. Natl. Acad. Sci. U.S.A., 78 (1981) 4141.

    Google Scholar 

  6. Duka, T.H., Schubert, P., Wüster, M., Stoiber, R. and Herz, A., Neurosci. Lett., 21 (1981) 119.

    Google Scholar 

  7. Chang, K.J., Cooper, B.R., Hazum, E. and Cuatrecasas, P., Mol. Pharmacol., 16 (1979) 91.

    Google Scholar 

  8. Chang, K.J., Hazum, E., Killian, A. and Cuatrecasas, P., Mol. Pharmacol., 20 (1981) 1.

    Google Scholar 

  9. Childers, S.R., Creese, I., Snowman, A.M. and Snyder, S.H., Eur. J. Pharmacol., 55 (1979) 11.

    Google Scholar 

  10. Portoghese, P.S., Larson, D.L., Sayre, L.M., Fries, D.S. and Takemori, A.E., J. Med. Chem., 23 (1980) 233.

    Google Scholar 

  11. Lipkowski, A.W., Tam, S.W. and Portoghese, P.S., J. Med. Chem., 29 (1986) 1222.

    Google Scholar 

  12. Fournié-Zaluski, M.C., Gacel, G., Maigret, B., Prémilat, S. and Roques, B.P., Mol. Pharmacol., 20 (1981) 484.

    Google Scholar 

  13. Roques, B.P., Fournié-Zaluski, M.C., Gacel, G., David, M., Meunier, J.C., Maigret, B. and Morgat, J.L., In Costa, E. and Trabucchi, M. (Eds.) Regulatory Peptides: From Molecular Biology to Function, Raven Press, New York, NY, 1982, pp. 321–331.

    Google Scholar 

  14. DiMaio, J. and Schiller, P.W., Proc. Natl. Acad. Sci. U.S.A., 77 (1980) 7162.

    Google Scholar 

  15. Schiller, P.W. and DiMaio, J., Nature, 297 (1982) 74.

    Google Scholar 

  16. DiMaio, J., Nguyen, T.M.D., Lemieux, C. and Schiller, P.W., J. Med. Chem., 25 (1982) 1432.

    Google Scholar 

  17. Schiller, P.W. and DiMaio, J., In Hruby, V.J. and Rich, D.H. (Eds.) Peptides: Structure and Function. (Procs. 8th Am. Pept. Symp.), Pierce Chemical Co, Rockford, IL, 1983, pp. 269–278.

    Google Scholar 

  18. Lord, J.A.H., Waterfield, A.A., Hughes, J. and Kosterlitz, H.W., Nature, 267 (1977) 495.

    Google Scholar 

  19. Sherman, D.B., Spatola, A.F., Wire, W.S., Burks, T.F., Nguyen, T.M.D. and Schiller, P.W., Biochem. Biophys. Res. Comm., 162 (1989) 1126.

    Google Scholar 

  20. Mosberg, H.I., Hurst, R., Hruby, V.J., Galligan, J.J., Burks, T.F., Gee, K. and Yamamura, H.I., Biochem. Biophys. Res. Commun., 106 (1982) 506.

    Google Scholar 

  21. Mosberg, H.I., Hurst, R., Hruby, V.J., Galligan, J.J., Burks, T.F., Gee, K. and Yamamura, H.I., Life Sci., 32 (1983) 2565.

    Google Scholar 

  22. Mosberg, H.I., Int. J. Rept. Protein Res., 29 (1987) 282.

    Google Scholar 

  23. Loew, G., Keys, C., Luke, B., Polgar, W. and Toll, L., Mol. Pharmacol., 29 (1986) 546.

    Google Scholar 

  24. Keys, C., Payne, P., Amsterdam, P., Toll, L. and Loew, G., Mol. Pharmacol., 33 (1988) 528.

    Google Scholar 

  25. DiMaio, J., Bayly, C.I., Villeneuve, G. and Michel, A., J. Med. Chem., 29 (1986) 1658.

    Google Scholar 

  26. Snyder, S.H. and Goodman, R.R., J. Neurochem., 35 (1980) 5.

    Google Scholar 

  27. DiMaio, J., Unpublished observations.

  28. SYBYL Molecular Modelling Software, Version 5.1, Tripos Associate Inc., April, 1988.

  29. Clark, M., Cramer, J.D. and VanOpdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  30. Marshall, G. and Kataoka, X., SYBYL Software Problem Report, 2 (1990) 2.

    Google Scholar 

  31. Gelin, B. and Karplus, M., Biochemistry, 18 (1979) 1256.

    Google Scholar 

  32. Van denHende, J.N. and Nelson, N.R., J. Am. Chem. Soc., 89 (1967) 2901.

    Google Scholar 

  33. A dummy atom is geometrically defined in space but does not contribute to the energy summations.

  34. Kessler, H., Holzemann, G. and Zechel, C., Int. J. Pept. Protein Res., 25 (1985) 267.

    Google Scholar 

  35. Kessler, H. and Holzemann, G., Angew. Chem. Int. Ed. Engl., 20 (1981) 124.

    Google Scholar 

  36. Bentley, K.W. and Lewis, J.W., In Kosterlitz, H.W., Collier, H.O.S. and Villarieal, J.E. (Eds.) Agonist and Antagonist Actions of Narcotic Analgesic Drugs, University Park Press, Baltimore, MD, 1972, pp. 7–16.

    Google Scholar 

  37. Loew, G.H. and Perts, K., Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 7.

    Google Scholar 

  38. Larson, D.L. and Portoghese, P., J. Med. Chem., 16 (1973) 195.

    Google Scholar 

  39. Michel, A.G., Proulx, M., Evrard, G., Norberg, B. and Milchert, E., Can. J. Chem., 66 (1988) 2498.

    Google Scholar 

  40. Hutchins, C.W. and Rapoport, H., J. Med. Chem., 27 (1984) 521.

    Google Scholar 

  41. Bradbury, A.F., Smyth, D.G. and Snell, C.R., Nature, 260 (1976) 165.

    Google Scholar 

  42. Portoghese, P.S., Sultana, M., Nagase, H. and Takemori, A.E., J. Med. Chem., 31 (1988) 281.

    Google Scholar 

  43. Mosberg, H.I., Hurst, R., Hruby, V.J., Gee, K., Yamamura, H.I., Galligan, J.J. and Burks, T.F., Proc. Natl. Acad. Sci. U.S.A., 80 (1983) 5871.

    Google Scholar 

  44. Zimmerman, S.S., Pottle, M.S., Némethy, G. and Scheraga, H.A., Macromolecules, 10 (1977) 1.

    Google Scholar 

  45. RMS values were calculated by SQRT (EΔ2/n−1) where n is the number of atoms within the macrocycle and Δ is the minimum distance between each atom and the middle plane.

  46. Froimowitz, M. and Hruby, V.J., Int. J. Pept. Protein Res., 34 (1989) 88.

    Google Scholar 

  47. Hruby, V.J., Kao, L.F., Pettit, B.M. and Karplus, M., J. Am. Chem. Soc., 110 (1988) 3351.

    Google Scholar 

  48. Kerlavage, A.R., Fraser, C.M. and Venter, J.C., Trends Pharmacol. Sci., 8 (1987) 426.

    Google Scholar 

  49. Schiller, P.W., Nguyen, T.M.D., DiMaio, J. and Lemieux, C., Life Sci., 33 (Suppl. 1) (1983) 319.

    Google Scholar 

  50. Ramakrishman, K. and Portoghese, P.S., J. Med. Chem., 25 (1982) 1423.

    Google Scholar 

  51. Shiotani, S., Kometani, T., Mitsuhaski, K., Nosawa, T., Kurobe, A. and Futsukaishi, O., J. Med. Chem., 19 (1976) 803.

    Google Scholar 

  52. Freed, M.E., Potoski, J.R., Freed, E.H., Conklin, G.L. and Bell, S.C., J. Med. (Chem., 19 1976) 476.

    Google Scholar 

  53. Portoghese, P.S., Alreja, B.D. and Larson, D.L., J. Med. Chem., 24 (1981) 782.

    Google Scholar 

  54. DiMaio, J., Schiller, P.W. and Belleau, B., In Gross, E. and Meienhofer, J. (Eds.) Peptides: Structure and Function. (Procs. 6th Am. Pept. Symp.), Pierce Chemical Co., Rockford, IL, 1979, pp. 889–892.

    Google Scholar 

  55. Mammi, N.J., Hassan, M. and Goodman, M., J. Am. Chem. Soc., 107 (1985) 4008.

    Google Scholar 

  56. Hall, D. and Pavitt, N., Biopolymers, 24 (1985) 935.

    Google Scholar 

  57. Wilkes, B.C. and Schiller, P.W., Biopolymers, 26 (1987) 1431.

    Google Scholar 

  58. Belleney, J., Roques, B.P. and Fournié-Zaluski, M.C., Int. J. Pept. Protein Res., 30 (1987) 356.

    Google Scholar 

  59. Schiller, P.W., Eggimann, B., DiMaio, J., Lemieux, C. and Nguyen, T.M.D., Biochem. Biophys. Res. Comm., 101 (1981) 337.

    Google Scholar 

  60. Schwyzer, R., Biochemistry U.S.A., 25 (1986) 6335.

    Google Scholar 

  61. Schiller, P.W., Nguyen, T.M.D., Chung, N.N. and Lemieux, C., J. Med. Chem., 32 (1989) 698.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, A., Villeneuve, G. & DiMaio, J. A proposal for the molecular basis of μ and δ opiate receptor differentiation based on modeling of two types of cyclic enkephalins and a narcotic alkaloid. J Computer-Aided Mol Des 5, 553–569 (1991). https://doi.org/10.1007/BF00135314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00135314

Key words

Navigation