Skip to main content
Log in

Genetic variability in Chamaenerion angustifolium (L.) Scop. (Onagraceae) occurring on contrasting soils

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Isoenzyme analysis of 5 populations of Chamaenerion angustifolium (L.) Scop. from different habitats revealed that only two of the nine enzymes scored were polymorphic. The estimated number of polymorphic loci was 2 out of 16. The only significant difference found was with regard to the gene and genotype frequencies of glucose-6-phosphate dehydrogenase (G6PDH). This difference could be demonstrated for established populations, occurring on contrasting soils but not for their seed populations.

The genetic similarity between seed populations even in a sample obtained from only four established individuals was striking and its consequences for the life strategy and colonizing ability of the species are discussed. Genotypic differentiation due to age structure was not present. Genotype-dependent selection occurs in the seedling phase only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R. W. & Bradshaw, A. D., 1964. Implications of genotype environment interactions in applied plant breeding. Crop. Sci. 4: 503–508.

    Google Scholar 

  • Antonovics, H., Bradshaw, A. D. & Turner, R. G., 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1–85.

    Google Scholar 

  • Baker, H. G., 1965. Characteristics and modes of origin of weeds. In: The genetics of colonizing species (eds. H. G., Baker & G. L., Stebbins) pp. 147–172. Academic Press, New York.

    Google Scholar 

  • Baker, J., Maynard Smith, J. & Strobeck, C., 1975. Genetic polymorphism in the bladder campion, Silene maritima. Biochem. Genet. 13: 393–410.

    Google Scholar 

  • Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.

    Google Scholar 

  • Brown, A. H. D., 1979. Enzyme polymorphism in plant populations. Theor. Pop. Biol. 15: 1–42.

    Google Scholar 

  • Brown, J. C. & Jones, W. E., 1974. pH changes associated with iron stress response. Physiologia Pl. 30: 148–152.

    Google Scholar 

  • Brown, A. H. D., Matheson, A. C. & Eldridge, K. G., 1975. Estimation of the mating system of Eucalyptus obligua L'Herit by using allozyme polymorphisms. Aust. J. Bot. 23: 931–949.

    Google Scholar 

  • Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., 1975. Physiology of heavy metal resistance in plants. Proc. Int. Conf. Heavy Metals in the Environment, Toronto 1975, vol. 2: pp. 121–136, Toronto.

    Google Scholar 

  • Ernst, W. H. O., 1976. Okologische Grenze zwischen Violetum calaminariae und Gentiano-Koelerietum. Ber. dt. bot. Ges. 89: 381–390.

    Google Scholar 

  • Grime, J. P. & Hodgson, J. G., 1968. The ecological significance of lime chlorosis. In: Ecological aspects of mineral nutrition of plants. (ed. Rorison, I. H.) pp. 67–99. Blackwell, Oxford.

    Google Scholar 

  • Harper, J. L., 1977. Population biology of plants. Academic Press, New York.

    Google Scholar 

  • Hutchinson, T. C., 1968. A physiological study of teucrium scorodonia ecotypes which differ in their susceptibility to lime-induced chlorosis and iron deficiency chlorosis. Plant Soil 28: 81–105.

    Google Scholar 

  • Johnson, G. B., 1971. Metabolic implications of polymorphism as an adaptive strategy. Nature 232: 347–349.

    Google Scholar 

  • Johnson, G. B., 1974. Enzyme polymorphism and metabolism. Science 184: 28–37.

    Google Scholar 

  • Kaiser, W. M. & Bassham, J. A., 1979. Carbon metabolism of chloroplasts in the dark: oxidative pentose phosphate cycle versus glycolytic pathway. Planta 144: 193–200.

    Google Scholar 

  • Koehn, R. K. & Eanes, W. F., 1978. Molecular structure and protein variation within and among populations. In: Evolutionary biology, vol. 11, eds. M. K., Hecht, W. C., Steere & B., Wallace, pp. 39–100. Plenum Press, New York/London.

    Google Scholar 

  • Kuiper, D. & Kuiper, P. J. C., 1978. Lipid composition of the roots of Plantago species: response to alterations of the level of mineral nutrition and ecological significance. Physiologia Pl. 44: 81–86.

    Google Scholar 

  • Lendzian, K. & Bassham, J. A., 1975. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP ratios. Biochim. biophys. Acta 396: 260–275.

    Google Scholar 

  • Levin, D. A., 1975. Genic heterozygosity and protein polymorphism among local populations of Oenothera biennis. Genetics 79: 477–491.

    Google Scholar 

  • Levin, D. A., Ritler, K. & Ellstrand, N. C., 1979. Protein polymorphism in the narrow endemic Oenothera organensis. Evolution 33: 534–542.

    Google Scholar 

  • Lewontin, R. C., 1957. The adaptations of populations to varying environments. Cold Spring Harb. Symp. Quant. Biol. 22: 395–408.

    Google Scholar 

  • Lewontin, R. C., 1974. The genetic basis of evolutionary change. Columbia Univ. Press, New York.

    Google Scholar 

  • Mathys, W., 1977. The role of malate, oxalate, and mustard-oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Pl. 40: 130–136.

    Google Scholar 

  • McNeilly, T. S., 1968. Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine. Heredity 23: 99–108.

    Google Scholar 

  • Mosquin, T., 1966. A new taxonomy for Epilobium angustifolium (L.) (Onagraceae). Brittonia 18: 167–188.

    Google Scholar 

  • Moss, E., 1936. The ecology of Epilobium angustifolium with particular reference to rings of periderm in the wood. Am. J. Bot. 23: 114–120.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.

    Google Scholar 

  • Oberdorfer, E., 1973. Die Gliederung der Epilobietea angustifolii-Gesellschaften am Beispiel süddeutscher Vegetations-aufnahmen. Acta Bot. Acad. Sci. Hung. 19: 235–253.

    Google Scholar 

  • Philips, M. A. & Brown, A. H. D., 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust. J. biol. Sci. 30: 337–344.

    Google Scholar 

  • Powell, J. R., 1975a. Protein variation in natural populations of animals. In: Evolutionary biology, Vol. 8, eds. Th., Dobzhansky, M. U., Hecht & W. C., Steere, pp. 79–119. Plenum, New York.

    Google Scholar 

  • Powell, J. R., 1975b. Isozymes and non-Darwinian evolution: a re-evaluation. In: Isozymes, Vol. IV, Genetics and evolution, ed. C. L., Markert) pp. 9–26, Academic Press, New York/San Francisco, London.

    Google Scholar 

  • Rick, C. R., Tanksley, S. D. & Fobes, J. F., 1979. A pseudoduplication in Lycopersicon pimpinellifolium. Proc. natn. Acad. Sci. U.S.A. 76: 3435–3439.

    Google Scholar 

  • Scandalios, J. G., 1977. Isozymes: genetic and biochemical regulation of alcohol dehydrogenase. In: Regulation of enzyme synthesis and activity in higher plants, ed. H., Smith, pp. 129–153. Academic Press, New York.

    Google Scholar 

  • Schaal, B. A., 1975. Population structure and local differentiation in Liatris cylindracea. Am. Nat. 109: 511–528.

    Google Scholar 

  • Schaal, B. A. & Levin, D. A., 1976. The demographic genetics of Liatris cylindracea Michx. (Compositae). Am. Nat. 110: 191–206.

    Google Scholar 

  • Schnarrenberger, C., Oeser, A. & Tolbert, N. E., 1973. Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase in spinach leaves. Archs Biochem. Biophys. 154: 438–448.

    Google Scholar 

  • Schwartz, D., 1979. Analysis of the size alleles of the pro gene in maize — Evidence for a mutant protein processor. Molec. gen. Genet. 174: 233–240.

    Google Scholar 

  • Shaw, C. R. & Prasad, R., 1970. Starch gel electrophoresis of enzymes. A compilation of recipes. Biochem. Genet. 4: 297–320.

    Google Scholar 

  • Sokal, R. R., 1978. Population differentiation: something new or more of the same? In: Ecological genetics: the interface, ed. P. F., Brussard, pp. 215–329. Springer Verlag, New York/Heidelberg/Berlin.

    Google Scholar 

  • Thoday, J. M., 1959. Effect of disruptive selection. I. Genetic flexibility. Heredity 13: 187–203.

    Google Scholar 

  • Van, Andel, J., 1975. A study on the population dynamics of the perennial plant species Chamaenerion angustifolium (L.) Scop. Oecologia 19: 329–337.

    Google Scholar 

  • Van, Andel, J. & Rozema, J., 1974. An experiment on reproduction from seeds within existing populations of Chamaenerion angustifolium (L.) Scop. Plant Soil 41: 415–419.

    Google Scholar 

  • Van, Andel, J., Bos, W. & Ernst, W. H. O., 1978. An experimental study on two populations of Chamaenerion angustifolium (L.) Scop. (=Epilobium angustifolium (L.)) occurring on contrasting soils, with particular reference to the response to bicarbonate. New Phytol. 81: 763–772.

    Google Scholar 

  • Van, Andel, J. & Nelissen, H. J. M., 1979. Nutritional status of soil and plant species in several clearings in coniferous woods compared to that in two related habitats. Vegetatio 39: 115–121.

    Google Scholar 

  • Verkleij, J. A. C. & Zuetenhorst, J. J., 1980. Differential changes in isoenzyme pattern of 6-phosphogluconate dehydrogenase in individual plants of Senecio sylvaticus L. during development. Biochem. Biophys. Pflanzen. 175: 9–14.

    Google Scholar 

  • Verkleij, J. A. C., de, Boer, A. M. & Lugtenborg, T. F., 1980. On the ecogenetics of Stellaria media (L.) Vill. and stellaria pallida (Dum.) Piré from abandoned arable field. Oecologia 46: 354–359.

    Google Scholar 

  • Waisel, Y., 1972. Biology of halophytes. Academic Press, New York, London.

    Google Scholar 

  • Werner, P. A., 1978. On the determination of age in Liatris aspera using cross-sections of corms: implications for past demographic studies. Am. Nat. 112: 1113–1120.

    Google Scholar 

  • Zouros, E., 1975. Electrophoretic variation in allelozymes related to function or structure? Nature 254: 446–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkleij, J.A.C., Koniuszek, J.W.J. Genetic variability in Chamaenerion angustifolium (L.) Scop. (Onagraceae) occurring on contrasting soils. Genetica 55, 151–159 (1981). https://doi.org/10.1007/BF00135112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00135112

Keywords

Navigation