Skip to main content
Log in

The tensile behavior of a silicon carbide fiber-reinforced titanium matrix composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper summarizes the results of a study on the effects of composite microstructure and test temperature on tensile deformation and fracture behavior of a symmetric [0/90]2s titanium alloy metal-matrix composite. Matrix microstructure is controlled by heat treatment, which is used to produce metastable β or Widmanstatten α+β microstructures. The sequence of damage initiation and evolution at both room and elevated temperature (650°C) is identified using ex-situ scanning electron microscopy observations during incremental monotonic loading to failure. The nature, sequence and complexity of damage during uniaxial loading is presented and discussed in light of competing and mutually interactive influences of load level and deformation characteristics of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wardsworth, J. and Froes, F. H., Journal of Metals 41, 1989, 12–19.

    Google Scholar 

  2. Stephens, J. R., NASA Technical Memorandum TM-100212, NASA-Lewis Reseach Center, Cleveland, OH, 1987.

    Google Scholar 

  3. Yang, J. M. and Jeng, S. M., Journal of Metals 44, 1992, 53–57.

    Google Scholar 

  4. Jeng, S. M., Shih, C. J., Kai, W. and Yang, J. M., Materials Science and Engineering A114, 1989, 189–196.

    Google Scholar 

  5. Martineu, P., Paille, R., Layeye, M. and Naslain, R., Journal of Materials Science 12, 1984, 2749.

    Google Scholar 

  6. Rhodes, C. G. and Spurling, R. A., in J. R. Vinson and M. Taya (eds), Recent Development of Composites in the United States and Japan, ASTM STP 864, American Society for Testing and Materials, Philadelphia, PA, 1985, pp. 585–599.

    Google Scholar 

  7. Yang, J. M. and Jeng, S. M., Journal of Metals 41, 1989, 56–59.

    Google Scholar 

  8. Yang, C. J., Jeng, S. M. and Yang, J. M., Scripta Metallurgica 24, 1990, 469–474.

    Google Scholar 

  9. Johnson, W. S., Lubowinski, S. J. and Highsmith, A. L., in J. M. Kennedy, H. H. Moeller and W. S. Johnson (eds), Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites, ASTM STP 1080, American Society for Testing and Materials, Philadelphia, 1990, pp. 193–218.

    Google Scholar 

  10. Harmon, D. and Saff, C. R., in W. S. Johnson (ed.), Metal Matrix Composites Testing, Analysis and Failure Modes, ASTM STP 1032, American Society for Testing and Materials, Philadelphia, PA, 1989, pp. 194–221.

    Google Scholar 

  11. Saff, C. R., Harmon, D. M. and Johnson, W. S., ‘Damage Initiation and Growth in Fiber Reinforced Metal Matrix Composites’, Journal of Metals 40, 1988, 58–63.

    Google Scholar 

  12. Walls, D., Bao, G. and Zok, F., ‘Effects of Fiber Failure on Fatigue Cracking in a Ti-SiC Composite’, Scripta Metallurgica 25, 911.

  13. Chan, K. S., Acta Metallurgica Materialia 41, 1993, 761–768.

    Google Scholar 

  14. Soboyejo, W. O., Materials Science and Engineering A183, 1994, 49–58.

    Google Scholar 

  15. Soboyejo, W. O. and Rabeeh, B. M., Materials Science and Engineering A200, 1995, 89–102.

    Google Scholar 

  16. Majumdar, B. S., Newaz, G. M. and Ellis, J. R., Metallurgical Transactions 24A, 1993, 1597–1610.

    Google Scholar 

  17. Lerch, B. A. and Saltsman, J., ‘Tensile Deformation Damage in SiC Reinforced Ti-15V-3Cr-3Al-3Sn’, NASA Technical Memorandum 103620, NASA-Lewis Research Center, Cleveland, OH, 1991.

    Google Scholar 

  18. Lerch, B. A., Hull, D. R. and Leonhardt, T. A., Composites 21, 1990, 216–224.

    Google Scholar 

  19. Revelos, W. C., Jones, J. W. and Dolley, E. J., Metallurgical and Materials Transactions 26A, 1995, 1167–1181.

    Google Scholar 

  20. Shyue, J., Soboyejo, W. O. and Fraser, H. L., ‘Microstructural Characterization of Layered Interfaces in a Silicon Carbide Fiber Reinforced Titanium Matrix Composite’, Scripta Metallurgica et Materialia 32(10), 1995, 1695–1700.

    Google Scholar 

  21. Russ, S. M., Metallurgical Transactions 231, 1990, 1595–1602.

    Google Scholar 

  22. Revelos, W. C. and Roman, I., Materials Research Society Symposium Proceedings 273, 1992, 53–58.

    Google Scholar 

  23. Revelos, W. C. and Smith, P. R., Metallurgical Transactions 23A, 1992, 587–595.

    Google Scholar 

  24. Nicholas, T., Kroupa, J. L. and Neu, R. W., Composites Engineering 3(7–8), 1993, 675–689.

    Google Scholar 

  25. Brindley, P. K., MacKay, R. A. and Bartolotta, P. A., in P. R. Smith, S. J. Balsone and T. Nicholas (eds), Titanium Aluminide Composites, WL-TR-91–4020 Wright Patterson Air Force Base, Ohio, 1991, pp. 484–496.

    Google Scholar 

  26. MacKay, R. A., ‘Effect of Fiber Spacing on Interfacial Damage in a Metal-Matrix Composite’, Scripta Metallurgica et Materialia 24, 1990, 167–172.

    Google Scholar 

  27. Bigelow, C. A., ‘The Effects of Uneven Fiber Spacing on Thermal Residual Stresses in a Unidirectional SCS-6/Ti-15–3 Laminate’, Journal of Composite Technology Research 14(4), 1992, 211–220.

    Google Scholar 

  28. Rosenberg, H. W., Journal of Metals 35, 1983, 30–34.

    Google Scholar 

  29. Ghosn, L. J., Kantzos, P. and Telesman, J., NASA Technical Memorandum TM 104355, NASA-Lewis Research Center, Cleveland, OH, USA, May 1991.

    Google Scholar 

  30. LeMaitre, J., An Introduction to Composite Damage Mechanics, McGraw Hill, New York, 1993.

    Google Scholar 

  31. Kantzos, P., NASA: Lewis Reseach Center, Cleveland, OH, Personal Communication, 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabeeh, B.M., Ramasundaram, P., Soboyejo, W.O. et al. The tensile behavior of a silicon carbide fiber-reinforced titanium matrix composite. Appl Compos Mater 3, 215–247 (1996). https://doi.org/10.1007/BF00134697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00134697

Key words

Navigation