Skip to main content
Log in

Lambdoid phages as elements of bacterial genomes (integrase/phage21/ Escherichia coli K-12/icd gene)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The lambdoid phages are a group of related temperate bacteriophages that lysogenize by site-specific recombination with the bacterial chromosome. Various members of the group have different specific chromosomal insertion sites, despite the fact that the enzymes catalyzing the insertion (integrases) appear to be all descended from a common ancestor. Insertion sites are not located randomly on the E. coli chromosome but are restricted to one segment of the map; also, most prophages are oriented in the same direction along the chromosome. Lambdoid phage 21 inserts within the isocitrate dehydrogenase gene and introduces an alternative 165 bp 3′ end for that gene. A defective element (el4) inserts at the same position. We suggest that this mode of insertion arose from insertion of an ancestral phage to the right of icd which then picked up part of the icd gene by abnormal excision speculate that, at an earlier time, phages may have arrived at their present locations by a process of chromosomal walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J., R. Limberger, S. J. Schneider & A. Campbell, 1991. Recombination and modular exchange in the genes of new lambdoid phages. The New Biologist 3: 297–308.

    Google Scholar 

  • Brewer, B. J., 1990. Replication and the transcriptional organization of the Escherichia coli chromosome, pp. 61–84 in The Bacterial Chromosome, edited by K. Drlica and M. Riley. Amer. Soc. Microbiol. Washington, D.C.

    Google Scholar 

  • Brown, D. P., K. B. Idler & L. Katz, 1990. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J. Bacteriol. 4: 1877–1888.

    Google Scholar 

  • Brody, H., A. Greener & C. W. Hill, 1985. Excision and reintegration of the Escherichia coli K-12 chromosomal element e14. J. Bacteriol. 161: 1112–1117.

    Google Scholar 

  • Brody, H. & C. W. Hill, 1988. Attachment site of the genetic element e14. J. Bacteriol. 170: 2040–2044.

    Google Scholar 

  • Campbell, A., 1962. Episomes. Adv. Genet. 11: 101–145.

    Google Scholar 

  • Campbell, A., 1988. Phage evolution and speciation, pp. 1–14 in The Bacteriophages, Volume I, edited by R. Calendar, Plenum Press, N.Y.

    Google Scholar 

  • Campbell, A. & D. Botstein, 1983. Evolution of the lambdoid phages, pp. 365–380 in Lambda II, edited by R. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Campbell, A., J. Kim-Ha, R. J. Limberger & S. J. Schneider, 1990. Bacteriophage evolution and population structure, pp. 191–199 in Molecular Evolution, edited by M. T. Clegg and S. J. O'Brien, Wiley-Liss, N.Y.

    Google Scholar 

  • Craig, N. L., 1988. The mechanism of conservative site-specific recombination. Ann. Rev. Genet. 22: 77–106.

    Google Scholar 

  • Daniels, D., J. Schroeder, W. Szybalski, F. Sanger, A. Coulson, G. Hong, D. Hill, G. Petersen & F. Blattner, 1982. Complete annotated lambda sequence, pp. 519–576 in Lambda II, edited by R. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Davidson, N., R. Deonier, S. Hu & E. Ohtsubo, 1975. Electron microscopic heteroduplex studies of sequence relationships among plasmids of Escherichia coli. X. Deoxyribonucleic acid sequence organization in F and F-primes, and the sequences involved in Hfr formation, pp. 56–65 in Microbiology 1974, edited by D. Schlessinger. Amer. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Dhillon, T. S., 1981. Temperate coliphage HK022: virions, DNA, one-step growth, attachment site and the prophage genetic map. J. Gen. Virol. 55: 487–492.

    Google Scholar 

  • Echols, H. & G. Guarneros, 1983. Control of integration and excision, pp. 75–92 in Lambda II, edited by R. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg, Cold Spring Harbor Press, Gold Spring Harbor, N.Y.

    Google Scholar 

  • Franklin, N. C., W. F. Dove & C. Yanofsky, 1965. A linear insertion of prophage into the chromosome of E. coli shown by deletion mapping. Biochem. Biophys. Res. Commun. 18: 910–923.

    Google Scholar 

  • Gardella, T., H. Moyle & M. M. Susskind, 1989. A mutant Escherichïa coli 267–1 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206: 579–590.

    Google Scholar 

  • Haggard, E., C. Halling & R. Calendar, 1992. DNA sequence of the tail fiber genes of bacteriophage P2: evidence for horizontal transfer of tail fiber genes among unrelated bacteriophages. J. Bacteriol. (in press)

  • Highton, P. J., Y. Chang & R. J. Myers, 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4: 1329–1340.

    Google Scholar 

  • Jacob, F. & E. L. Wollman, 1961. Sexuality and the Genetics of Bacteria. Academic Press, N.Y.

    Google Scholar 

  • Leong, J., S. Nunes-Duby, C. F. Lesser, P. Youderian, M. M. Susskind & A. Landy, 1985. The ϕ80 and P22 attachment sites: primary structure and interaction with E. coli integration host factor. J. Biol. Chem. 260: 4468–4477.

    Google Scholar 

  • Lindsey, D. F., D. A. Mullin & J. R. Walker, 1989. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J. Bacteriol. 171: 6197–6205.

    Google Scholar 

  • Redfield, R. J. & A. M. Campbell, 1987. Structure of cryptic prophages. J. Mol. Biol. 198: 343–404.

    Google Scholar 

  • Reiter, W.-D., P. Palm & S. Yeats, 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nuclei Acids Res. 17: 1907–1914.

    Google Scholar 

  • Shimada, K., R. A. Weisberg & M. E. Gottesman, 1972. Prophage attachment at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J. Mol. Biol. 63: 483–503.

    Google Scholar 

  • Stoltzfus, A. B., 1991. A survey of natural variation in the trp-tonB region of the E. coli chromosome. Thesis, University of Iowa.

  • Sun, J., M. Inouye & S. Inouye, 1991. Association of a retroelement with a P4-like cryptic prophage (retronohage ϕR73) integrated into the selenocystyl tRNA gene of Escherichia coli. J. Bacteriol. 173: 4171–4181.

    Google Scholar 

  • Susskind, M. & D. Botstein, 1978. Molecular genetics of bacteriophage P22. Microbiol. Rev. 42: 385–413.

    Google Scholar 

  • Weisberg, R. & A. Landy, 1983. Site-specific recombination in phage lambda, pp. 211–250 in Lambda II, edited by R. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Wharton, R. P. & M. Ptashne, 1985. Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature 318 601–605.

    Google Scholar 

  • Yagil, E., S. Dolev, J. Oberto, N. Kislev, N. Ramaiah & R. A. Weisberg, 1989. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J. Mol. Biol. 207: 697–717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, A., Schneider, S.J. & Song, B. Lambdoid phages as elements of bacterial genomes (integrase/phage21/ Escherichia coli K-12/icd gene). Genetica 86, 259–267 (1992). https://doi.org/10.1007/BF00133724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133724

Keywords

Navigation