Skip to main content
Log in

Ty1-copia group retrotransposons and the evolution of retroelements in the eukaryotes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Ty1-copia group retrotransposons are among the best studied transposable elements in the eukaryotes. This review discusses the extent of these transposons in the eukaryote kingdoms and compares models for the evolution of these genetic elements in the light of recent phylogenetic data. These data show that the Ty1-copia group is widespread among invertebrate eukaryotes, especially in the higher plant kingdom, where these genetic elements are unusually common and heterogeneous in their sequence. The phylogenetic data also suggest that the present day spectrum of Ty1-copia group retrotransposons has been influenced both by divergence during vertical transmission down evolving lineages and by horizontal transmission between distantly related species. Lastly, the factors affecting Ty1-copia group retrotransposon copy number and sequence heterogeneity in eukaryotic genomes and the effects of transpositional quiescence and defective retrotransposons upon evolution of Ty1-copia group retrotransposons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhipova, I. R. & Y. V. Ilyin, 1991. Control of transcription of Drosophila retrotransposons. BioEssays (in press).

  • Ashburner, M., 1989. Drosophila, A laboratory Handbook, pp. 101–103, Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB element from Drosophila melanogaster, pp. 485–502 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington USA.

    Google Scholar 

  • Boeke, J. D., D. Eichinger, D. Castrilon & G. R. Fink, 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1. Mol. Cell. Biol. 8: 1432–1442.

    Google Scholar 

  • Boeke, J., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington USA.

    Google Scholar 

  • Boeke, J. D. & K. B. Chapman, 1991. Retrotransposition mechanisms. Current Opinion in Cell Biology 3: 502–507.

    Google Scholar 

  • Boeke, J. D., D. Eichinger & G. Natsoulis, 1991. Doubling Ty1 element copy number in Saccharomyces cerevisiae: host genome stability and phenotype effects. Genetics (in press).

  • Brierly, C. & A. J. Flavell, 1990. The retrotransposon copia controls the relative levels of its gene products post transcriptionally by differential expression from its two major RNAs. Nucleic Acids Res. 18: 2947–2951.

    Google Scholar 

  • Calvi, B. R., T. J. Hong, S. D. Findley & W. M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66: 465–471.

    Google Scholar 

  • Camirand, A, S.-P. Benoit, C. Marineau & N. Brisson, 1990. Occurrence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene Mol. Gen. Genet. 224: 33–39.

    Google Scholar 

  • Camirand, A. & N. Brisson, 1990. The complete nucleotide sequence of the Ts1 retrotransposon of potato. Nucleic Acids Res. 18: 4929.

    Google Scholar 

  • Chaleff, D. T. & G. R. Fink, 1980. Genetic events associated with an insertion mutation in yeast. Cell 21: 227–237.

    Google Scholar 

  • Charlesworth, B., 1986. Genetic divergence between transposable elements. Genet. Res. Camb. 48: 111–118.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Google Scholar 

  • Clare, J. & P. Farabaugh, 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82: 2829–2833.

    Google Scholar 

  • Coffin, J., P. N. Tsichlis, C. S. Barker, S. Voynow & H. L. Robinson, 1980. Variation in avian retrovirus genomes. Ann. N.Y. Acad. Sci. 354: 410–425.

    Google Scholar 

  • Csink, A. K. & J. F. McDonald, 1990. copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.

    Google Scholar 

  • Cureio, M. J., A.-M. Hedge, J. D. Boeke & D. J. Garfinkel, 1990. Ty RNA levels determine the spectrum of retrotransposition levels that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220: 213–221.

    Google Scholar 

  • Daniels, S. B., L. D. Strausbaugh, L. Ehrman & R. Armstrong, 1984. Sequences homologous to P elements occur in Drosophila paulistorum. Proc. Natl. Acad. Sci. USA 81: 6794–6797.

    Google Scholar 

  • Devereux, J., P. Haeberli & O. Smithies, 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.

    Google Scholar 

  • Doolittle, R. F., D. F. Feng, M. S. Johnson & M. A. McClure, 1989. Origins and evolutionary relationships of retroviruses. Quarterly Rev. Biol. 64: 1–29.

    Google Scholar 

  • Doolittle, R. F. & D. F. Feng, 1990. Nearest neighbour procedure for relating progressively aligned amino acid sequences, pp. 659–669 in Methods in Enzymology, Vol. 183, edited by R. F. Doolittle. Academic Press, New York.

    Google Scholar 

  • Emori, Y., T. Shiba, S. Kanaya, S. Inouye, S. Yuki & K. Saigo, 1985. Determination if the nucleotide sequences of copia and copia-related RNA in Drosophila VLP. Nature 315: 773–776.

    Google Scholar 

  • Feng, D. F. & R. F. Doolittle, 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25: 351–360.

    Google Scholar 

  • Feng, D. F. & R. F. Doolittle, 1990. Progressive alignment and phylogenetic tree construction of protein sequences, pp. 375–387 in Methods in Enzymology, Vol. 183, edited by R. F. Doolittle. Academic Press, New York.

    Google Scholar 

  • Flavell, A. J., R. Levis, M. A. Simon & G. M. Rubin, 1981. The 5′ termini of RNAs encoded by the transposable element copia. Nucleic Acids Res. 9: 6279–6291.

    Google Scholar 

  • Flavell, A. J., 1984. Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature 310: 514–516.

    Google Scholar 

  • Flavell, A. J., D. B. Smith & A. Kumar, 1992. Extreme Heterogeneity of Ty1-copia Group Retrotransposons in Plants. Mol. Gen. Genet. 231: 233–242.

    Google Scholar 

  • Flavell, A. J. & D. B. Smith, 1992. A Ty1-copia group retrotransposon in a vertebrate. Mol. Gen. Genet. (in press).

  • Fourcade-Peronnet, F., L. D'Auriol, J. Becker, F. Galibert & M. Best-Belpomme, 1988. Primary structure and functional organization of Drosophila 1731 retrotransposon. Nucleic-Acids-Res. 11: 6113–25.

    Google Scholar 

  • Gojobori, T. & S. Yokohama, 1985. Rates of evolution of the retroviral oncogene of Moloney murine sarcome virus and of its cellular homologues. Proc. Natl. Acad. Sci. USA 82: 4198–4201.

    Google Scholar 

  • Grandbastien, M.-A., A. Spielman & M. Caboche, 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380.

    Google Scholar 

  • Grandbastien, M.-A., 1992. Retroelements in higher plants. Trends in Genetics (in press).

  • Hirochika, H., A. Fukuchi & F. Kikuchi, 1992. Retrotransposon families in rice. Mol. Gen. Genet. (in press).

  • Houck, M. A., J. B. Clark, K. R. Peterson & M. G. Kidwell, 1991. Possible horizontal transfer of Drosophila genes into the mite Proctolaelaps regalis. Science 253: 1125–1129.

    Google Scholar 

  • Junakovic, N., C. Di-Franco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97: 212–8.

    Google Scholar 

  • Konieczny, A., D. F. Voytas, M. P. Cummings & F. M. Ausubel, 1991. A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809.

    Google Scholar 

  • Kuff, E. L. & K. K. Leuders, 1988. The intracisternal A particle gene family: structural and functional aspects. Adv. Cancer Res. 51: 183–276.

    Google Scholar 

  • Kupiec, M. & T. D. Petes, 1988. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2942–2954.

    Google Scholar 

  • Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. Camb. 52: 223–235.

    Google Scholar 

  • Lee, D., T. H. N. Ellis, L. Turner, R. P. Hellens & W. G. Gleary, 1990. A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol. Biol. 15: 707–722.

    Google Scholar 

  • Linial, M. & D. Blair, 1984. Genetics of retroviruses, pp. 649–783 in RNA tumor viruses, edited by R. Weiss, N. Teich, H. Varmus and J. Coffin, Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Miller, D. W. & L. K. Miller, 1982. A virus mutant with the insertion of a copia-like transposable element. Nature 299: 562–564.

    Google Scholar 

  • Mizrokhi, L. J. & A. M. Mazo, 1990. Evidence for horizontal transmission of the mobile element jockey between distant Drosophila species. Proc. Natl. Acad. Sci. USA 87: 9216–9220.

    Google Scholar 

  • Mount, S. M. & G. M. Rubin, 1985. Complete nucleotide sequence of the Drosophila transposable element copia: Homology between copia and retroviral proteins. Mol. Cell. Biol. 5: 1630–1638.

    Google Scholar 

  • Potter, S. S., W. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Google Scholar 

  • Pouteau, S., E. Huttner, M. A. Grandbastien & M. Caboche, 1991. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10: 1911–1918.

    Google Scholar 

  • Reanney, D., 1984. The molecular evolution of viruses, pp. 175–196 in The Microbe, Part I, edited by B. W. J. Mahy and J. B. Pattison. Cambridge University Press, Cambridge.

    Google Scholar 

  • Rothnie, H. M., K. J. McCurrach, L. A. Glover & N. Hardman, 1991. Retrotransposon-like nature of Tp1 elements: implications for the organization of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum. Nucleic Acids Res. 19: 279–286.

    Google Scholar 

  • Saiki, R. K., D. H. Gelfland, S. Stoffel, S. Scharf, R. H. Higuchi, G. T. Horn, K. B. Mullis & H. A. Erlich, 1988. Primerdirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487.

    Google Scholar 

  • Shih, A., Misra & M. G. Rush, 1989. Detection of multiple novel reverse transcriptase coding sequences in human nucleic acids: Relation to primate retroviruses. J. Virol. 63: 64–75.

    Google Scholar 

  • Shiba, T. & K. Saigo, 1983. Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster. Nature 302: 119–124.

    Google Scholar 

  • Steinhauer, D. A. & J. J. Holland, 1986. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. J. Virol. 57: 219–228.

    Google Scholar 

  • Temin, H. M., 1980. Origin of retroviruses from cellular moveable genetic elements. Cell 21: 599–600.

    Google Scholar 

  • Teich, N., 1984. Taxonomy of retroviruses, pp. 53–55 in RNA tumor viruses, edited by R. Weiss, N. Teich, H. Varmus and J. Coffin. Cold Spring Harbor Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Varmus, H. E. & P. Brown, 1989. Retroviruses, pp. 53–108 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington USA.

    Google Scholar 

  • Voytas, D. F. & F. M. Ausubel, 1988. A copia-like transposable element family in Arabidopsis thaliana. Nature 336: 242–244.

    Google Scholar 

  • Walbot, V. & C. A. Cullis, 1985. Rapid genomic change in higher plants. Ann. Rev. Plant. Physiol. 36: 367–396.

    Google Scholar 

  • Warmington, J. R., R. B. Waring, C. S. Newlon, K. J. Indge & S. G. Oliver, 1985. Nucleotide sequence characterization of Ty1–17, a class II transposon from yeast. Nucleic Acids Res. 13: 6679–6693.

    Google Scholar 

  • Warren, A. & J. M. Crampton, 1991. Retrotransposon reverse transcriptase-like sequences in the genome of the mosquito Aedes aegypti. Nucleic Acids Res. (in press).

  • Xiong, Y. & T. H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    Google Scholar 

  • Xu, H. & J. D. Boeke, 1990. Host genes that influence transposition in yeast: the abundance of a rate tRNA regulates Ty1 transposition frequency. Proc. Natl. Acad. Sci. USA 87: 8360–8364.

    Google Scholar 

  • Xu, H. & J. D. Boeke, 1991. Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.

    Google Scholar 

  • Yoshioka, K., H. Honma, M. Zushi, S. Kondo, S. Togashi, T. Miyake & T. Shiba, 1990. Virus-like particle formation of Drosophila copia through autocatalytic processing. EMBO J. 9: 535–541.

    Google Scholar 

  • Yuki, S. S., S. Ishimaru, S. Inouye & K. Saigo, 1986. Identification of genes for reverse transcriptase-like enzymes in two Drosophila retrotransposons, 412 and gypsy; a rapid detection method of reverse transcriptase genes using YXDD box probes. Nucleic Acids Res. 14: 3017–3030.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flavell, A.J. Ty1-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica 86, 203–214 (1992). https://doi.org/10.1007/BF00133721

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133721

Key words

Navigation