Snakes: Active contour models

Abstract

A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A., Benson, and D.J., Evans, Acm Trans. Mathematical Software, vol. 3, pp. 96–103, 1977.

    Google Scholar 

  2. 2.

    M. Brady, W.E.L. Grimson, and D. Langridge, “Shape encoding and subjective contours”, Proc. Am. Assoc. Artif. Intel., Stanford University, 1980.

  3. 3.

    D.J. Burr, “Elastic matching of line drawings”, Ieee Trans. Pami p. 708. 1986.

  4. 4.

    P., Burr, and B., Julesz, “A disparity gradient limit for binocular fusion”, Science, vol. 208, pp. 615–617, 1980.

    Google Scholar 

  5. 5.

    M.A., Fischler, and R.A., Elschlager, “The representation and matching of pictorial structure”, Ieee Trans. on Computers, vol. C-22, pp. 67–92, 1973.

    Google Scholar 

  6. 6.

    I., Gladwell, and R., Wait (eds.), A Survey of Numerical Methods for Partial Differential Equations. Clarendon: Oxford, 1979.

    Google Scholar 

  7. 7.

    Kanisza, “Subjective contours”, Scientific American, vol. 234, pp. 48–52, 1976.

    Google Scholar 

  8. 8.

    E. Hildreth, “The computation of the velocity field”, PROC. ROY. SOC. (LONDON), vol. B221, pp. 189–220.

  9. 9.

    D., Marr, Vision. Freeman: San Francisco, 1982.

    Google Scholar 

  10. 10.

    D., Marr and E., Hildreth, “A theory of edge detection”, Proc. Roy. Soc. (London), vol. B207, pp. 187–217, 1980.

    Google Scholar 

  11. 11.

    D. Marr and H.K. Nishihara, “Visual information processing: Artificial Intelligence and the sensorium of sight”, TECHNOLOGY REVIEW, vol. 81(1), October 1978.

  12. 12.

    D., Marr and T., Poggio, “A computational theory of human stereo vision”, Proc. Roy. Soc. (London), vol. B204, pp. 301–328, 1979.

    Google Scholar 

  13. 13.

    A. Martelli, “An application of heuristic search methods to edge and contour detection”, CACM, vol. 19, p. 73, 1976.

  14. 14.

    T. Poggio and V. Toree, “Ill-posed problems and regularization analysis in early vision”, PROC. AARPA Image Understanding Workshop, New Orleans, L.A., Baumann (ed.), pp. 257–263, 1984.

  15. 15.

    T., Poggio, V., Toree, and C., Koch, “Computational vision and regularization theory”, Nature, vol. 317(6035), pp. 314–319, 1985.

    Google Scholar 

  16. 16.

    G., Sperling, “Binocular vision: a physical and a neural theory”, Am. J. Psychology, vol. 83, pp. 461–534, 1970.

    Google Scholar 

  17. 17.

    D. Terzopoulos, A. Witkin, and M. Kass, “Symmetryseeking models for 3D object reconstruction”, INT. J. COMPUTER VISION, vol. 3, 1987.

  18. 18.

    D. Terzopoulos, “Regularization of inverse visual problems involving discontinuities”, IEEE TRANS. PAMI-8, p. 413, 1986.

  19. 19.

    A.N., Tikhonov, “Regularization of incorrectly posed problems”, Sov. Math. Dokl., vol. 4, pp. 1624–1627, 1963.

    Google Scholar 

  20. 20.

    A. Witkin, “Scale space filtering”, PROC. EIGHTH INT. JOINT CONF. ARTIF. INTEL., Karlsruhe, pp. 1019–1021, 1983.

  21. 21.

    A. Witkin, D. Terzopoulos, and M. Kass, “Signal matching through scale space”, PROC. AM. ASSOC. ARTIF. INTEL., Philadelphia, pp. 714–719, 1986.

  22. 22.

    S. Ullman, “Filling the gaps: The shape of subjective contours and a model for their generation”, BIOLOGICAL CYBERNETICS, vol. 25, 1976.

  23. 23.

    B., Widrow, “The rubber mask technique, parts I and II”, Pattern Recognition, vol. 5, pp. 175–211, 1973.

    Google Scholar 

  24. 24.

    S. Zucker, R. Hummel, and A. Rosenfeld, “An application of relaxation labeling to line and curve enhancement”, IEEE TRANS. ON COMPUTERS, vol. C-26, p. 394, 1977.

  25. 25.

    S., Zucker, “Computational and psychophysical experiments in grouping: Early orientation selection”. In Human and Machine Vision, Jacob, Beck, et al. (eds.), Academic Press: New York, pp. 545–567, 1983.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kass, M., Witkin, A. & Terzopoulos, D. Snakes: Active contour models. Int J Comput Vision 1, 321–331 (1988). https://doi.org/10.1007/BF00133570

Download citation

Keywords

  • Image Processing
  • Artificial Intelligence
  • Computer Vision
  • Computer Image
  • Active Contour