Skip to main content
Log in

Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses)

  • Regular Research Papers
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Phylogenetic trees of the 8 species of the genus Lolium and of Festuca pratensis have been derived from frequency data at 13 isozyme loci using different distance algorithms. The best tree was obtained by the distance-Wagner method with the Cavalli-Sforza and Edwards chord distance. This tree appears robust when tested by bootstrap resampling of loci. This confirmed previous knowledge on species relationships in the genus Lolium, with supplementary data on the taxonomic position of the less studied L. persicum and L. canariense. Attempts were made to hybridize 4 Lolium species and F. pratensis. True interspecific hybrids, as confirmed by isozyme markers, were obtained for L. perenne x L. temulentum, L. temulentum x L. rigidum, L. temulentum x L. canariense and L. canariense x F. pratensis. This is the first report of this new form of Festulolium, which was obtained at a fairly high frequency, giving argument to a possible genetic proximity between L. canariense, an endemic species restricted to Atlantic islands, and F. pratensis, which has a more widespread, northern distribution. However, chromosome pairing analysis at meiosis did not support this conclusion, as the F1 L. canariense x F. pratensis definitely showed a higher level of asynapsis compared to that reported for L. perenne x F. pratensis. The apparently close relation between L. canariense and F. pratensis seen on the tree is therefore postulated to be an artefact, due to the low number of loci studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baum, B.R., T. Rajhathy, D.R. Sampson, 1973. An important new diploid species of Avena discovered on the Canary Islands. Can. J. Bot. 51: 759–762.

    Google Scholar 

  • Bernard, S., M. Bernard, 1989. Creating new forms of 4x, 6x and 8x primary triticale associating both complete R and D genomes. Theor. Appl. Genet. 74: 55–59.

    Google Scholar 

  • Borrill, M., 1976. Temperate grasses. In: N. Simmonds (Ed.) Evolution of Crop Plants, pp. 137–142, Longman, London.

    Google Scholar 

  • Breese, E.L., E.J. Lewis, 1984. Breeding versatile hybrid grasses. Span. 27: 3–5.

    Google Scholar 

  • Bulinska-Radmomska, Z., R.N. Lester, 1985. Relationships between five species of Lolium. Pl. Syst. Evol. 148: 169–175.

    Google Scholar 

  • Bulinska-Radomska, Z., R.N. Lester, 1988. Intergeneric relationships of Lolium, Festuca and Vulpia, Pl. Syst. Evol. 159: 217–227.

    Google Scholar 

  • Butkute, B.L., A.U. Konarev, 1980. Immunochemical study of Lolium in relation to the phylogeny of the genus. Bot. Zhurn. 65: 1453–58.

    Google Scholar 

  • Cavalli-Sforza, L.L., A.W.F. Adwards, 1967. Phylogenetic analysis: models and estimation procedures. Evolution 21: 550–570.

    Google Scholar 

  • Charmet, G., F. Balfourier, 1994. Isozyme variation and species relationships in the genus Lolium L.. Theor. Appl. Genet. 87: 641–649.

    Google Scholar 

  • Craig, I.L., B.E. Murray, T. Rajhathy, 1974. Avena canariensis: morphological and electrophoretic polymorphism and relationship to the A. magna-A. murphyi complex and A. sterilis Can. J. Genet. Cytol. 16: 677–689.

    Google Scholar 

  • Darbyshire, S.J., S.I. Warwick, 1992. Phylogeny of North American Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Can J. Bot. 70: 2415–2428.

    Google Scholar 

  • Emoto, T., 1985. Isozyme variation in the genus Lolium I — Phylogenetic relationships of Lolium species. J. Jap. Soc. Grassland Sci. 30: 327–334.

    Google Scholar 

  • Essad, S., 1954. Contribution à la systématique du genre Lolium. Annales INRA Paris, série B4: 325–351.

  • Essad, S., 1962. Etude génétique et cytogénétique des espèces Lolium perenne L., Festuca pratensis et de leurs hybrids. Ann. Amélior. Pl. 12: 1–103.

    Google Scholar 

  • Evans, G.M., T. Aung, 1985. Identification of a diploidizing genotype of L. multiflorum. Can. J. Genet. Cytol. 23: 627–638.

    Google Scholar 

  • Evans, G.M., A.J. Macefield, 1973. The effect of B chromosomes on homeologous pairing in species hybrids. I. Lolium temulentum x Lolium perenne. Chromosoma 41: 63–73.

    Google Scholar 

  • Farris, J.S., 1972. Estimating phylogenetic trees from distance matrices. Am. Natur. 106: 645–668.

    Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J., 1990. PHYLIP version 3.5. On-line documentation. University of Washington. Seattle WA 98195. USA.

    Google Scholar 

  • Fitch, W.M., E. Margoliash, 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Google Scholar 

  • Fancisco-Ortega, J., M.T. Jackson, A. Santos-Guerra, M. Fernandez-Galvan, 1991. Historical aspects of the origin and distribution of tagasaste (Chamaecytisus proliferus (L. fil.) Link ssp. palmensis (Christ) Kunkel), a fodder tree from the Canary Islands. J. Adelaide Bot. Gard. 14: 67–76.

    Google Scholar 

  • Jauhar, P.P., 1975. Chromosome relationships between Lolium and Festuca (Graminaceae). Chromosome (Berlin) 52: 103–121.

    Google Scholar 

  • Jenkin, T.J., 1935. Interspecific and intergeneric hybrids in herbage grasses II. Lolium perenne x L. temulentum. J. Genet. 31: 379–411.

    Google Scholar 

  • Jenkin, T.J., 1954a. Interspecific and intergeneric hybrids in herbage grasses V. Lolium rigidum sens. ampl. with other Lolium species. J. Genet. 52: 252–281.

    Google Scholar 

  • Jenkin, T.J., 1954b. Interspecific and intergeneric hybrids in herbage grasses VI. Lolium italicum A. Br. intercrossed with other Lolium types. J. Genet. 52: 282–299.

    Google Scholar 

  • Jenkin, T.J., 1954c. Interspecific and intergeneric hybrids in herbage grasses VII. Lolium perenne L. with other Lolium species. J. Genet. 52: 300–317.

    Google Scholar 

  • Jenkin, T.J., 1954d. Interspecific and intergeneric hybrids in herbage grasses VIII. Lolium Loliaceum, Lolium remotum and Lolium temulentum, with references to “Lolium canadense*. J. Genet. 52: 318–331.

    Google Scholar 

  • Jenkin, T.J., 1955a. Interspecific and intergeneric hybrids in herbage grasses. XVII. Further crosses involving L. perenne. J. Genet. 53: 442–466.

    Google Scholar 

  • Jenkin, T.J., 1955b. Interspecific and intergeneric hybrids in herbage grasses. XVIII. Various crosses including Lolium rigidum sens.ampl. with L. temulentum and L. loliaceum with Festuca pratensis and F. arundinacea. J. Genet. 53: 467–486.

    Google Scholar 

  • Jenkin, T.J. P.T. Thomas, 1938. The breeding affinities and cytology of Lolium species. J. Bot. Lond. 76: 10–12.

    Google Scholar 

  • Kimura, M., J.F. Crow, 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    Google Scholar 

  • Kloot, P.M., 1983. The genus Lolium in Australia. Aust. J. Bot. 31: 421–435.

    Google Scholar 

  • Legett, J.M., 1989. Interspecific hybrids in Avena. Genome 32: 346–348.

    Google Scholar 

  • Lehvaslaiho, H., A. Saura, J. Lokki, 1987. Chloroplast DNA variation in the grass tribe Festucae. Theor. Appl. Genet. 74: 298–302.

    Google Scholar 

  • Loos, B.P., 1993a. Morphological variation in Lolium (Poaceae) as a measure of species relationships. Plant Sys. Evol. 188: 87–99.

    Google Scholar 

  • Loos, B.P., 1993b. Allozyme variation within and between Lolium (Poaceae) populations. Plant sys. Evol, 188: 101–113.

    Google Scholar 

  • Loos, P.B., J. Piket, 1994. Seed characters in Lolium, morphology and protein content. In: B.P. Loos, The genus Lolium, “taxonomy and genetic resources”, chapter 4, pp 49–59, Thesis Wageningen, CPRO-DLO, Netherlands.

  • Malik, C.P., 1967. Cytogenetic studies of the F1 hybrid of Lolium multiflorum and Lolium rigidum and the species relationship in the genus Lolium. Der Züchter 37: 261–274.

    Google Scholar 

  • Malik, C.P., P.T. Thomas, 1966. Karyotypic studies in some Lolium and Festuca species. Caryologie 19: 167–196.

    Google Scholar 

  • Naylor, B., 1960. Species differentiation in the genus Lolium. Heredity 15: 219–233.

    Google Scholar 

  • Rees, H., G.H. Jones, 1967. Chromosome evolution in Lolium. Heredity 22: 1–18.

    Google Scholar 

  • Rogers, J.S., 1972. Measures of genetic similarity and genetic distance. Studies Genet. VII. Univ. Texas Publ. 7213: 145-

    Google Scholar 

  • Rogers, J.S., 1986. Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Zool. 35: 297–310.

    Google Scholar 

  • Saitou, N., M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sneath, P.H.A., R.R. Sokal, 1973. Numerical taxonomy. WH Freeman Ed San Francisco.

    Google Scholar 

  • Soreng, R.J., J.I. Davis, J.J. Doyle, 1990. A phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam Pooideae. PI. Syst. Evol. 172: 83–97.

    Google Scholar 

  • Stammers, M., J. Harris, G.M. Evans, M.D. Hayward, J.W. Forster, 1995. Use of random PCR (RAPD) technology to analyse phylogenetic relationships in the Lolium/Festuca complex. Heredity 74: 19–27.

    Google Scholar 

  • Swofford, D.L., 1981. On the utility of the distance wagner procedure. In: V.A. Funk & D.R. Brooks (Eds.). Adv. Cladistics, proc first meeting Willi Hennig Soc.: 25–43. New York Botanical Garden. NY.

    Google Scholar 

  • Swofford, D.L., R.B. Selander, 1981. Biosys 1: A Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.

    Google Scholar 

  • Terrell, E.E., 1966. Taxonomic implications of genetics in ryegrass (Lolium). Bot. Rev. 32: 138–164.

    Google Scholar 

  • Terrell E.E., 1968. A taxonomic revision of the genus Lolium. USDA Techn. Bull. 392: pp 65.

  • Thomas, H.M., 1981. The Giemsa C-band karyotypes of six Lolium species. Heredity 46: 263–267.

    Google Scholar 

  • Thomas, H., W.G. Morgan, M.W. Humphreys, 1988. The use of a triploid hybrid for introgression in Lolium species. Theor. Appl. Genet. 60: 291–296.

    Google Scholar 

  • Thorogood, D., M.D. Hayward, 1992. Self compatibility in Lolium temulentum L.: its genetic control and transfer into L. perenne L. and L. multiflorum Lam. Heredity 68: 71–78.

    Google Scholar 

  • Tutin, T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb (Eds.), 1980. Flora Europaea, vol 5. Cambridge University Press. Cambridge UK.

    Google Scholar 

  • Wu, Wu, A. Slepe, S. Chao, 1992. Detection of RFLP's in perennial ryegrass using heterologous probes from tall fescue. Crop. Sci. 32: 1366–1370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charmet, G., Balfourier, F. & Chatard, V. Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet Resour Crop Evol 43, 319–327 (1996). https://doi.org/10.1007/BF00132951

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132951

Key words

Navigation