Skip to main content
Log in

Sequential gel electrophoretic analysis of esterase-2 in two populations of Drosophila buzzatii

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Sequential electrophoresis, using three different buffer systems on cellulose acetate gels, was used to characterize the allelic variation for esterase-2 in two populations of D. buzzatii in Australia that are separated by 550 km. Twenty-five alleles were detected, of which nine were unique to one population, eight unique to the other, and only eight were common to both populations. Allele frequencies within each population were significantly different between the two major chromosome sequences (standard and j inversion), and for each chromosome sequence allele frequencies were significantly different between populations. Observed allelic frequency distributions were not significantly different from those predicted for selective neutrality using the homozygosity test statistic. However, estimates of the effective sizes of the populations derived from their observed differentiation, together with the history of the species in Australia, provide support for some form of balancing selection affecting at least some of the alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, J. S. F., 1982. Population genetics of Opuntia breeding Drosophila in Australia, pp. 209–224 in Ecological Genetics and Evolution. The cactus-yeast-Drosophila model system, edited by J. S. F., Barker & W. T., Starmer. Academic Press Australia, Sydney.

    Google Scholar 

  • Barker, J. S. F., P. D., East & F. B., Christiansen, 1989. Estimation of migration from a perturbation experiment in natural populations of Drosophila buzzatii Patterson & Wheeler. Biol. J. Linn. Soc. 37: 311–334.

    Google Scholar 

  • Barker, J. S. F., P. D., East & B. S., Weir, 1986. Temporal and microgeographic variation in allozyme frequencies in a natural population of Drosophila buzzatii. Genetics 112: 577–611.

    Google Scholar 

  • Barker, J. S. F. & J. C., Mulley, 1976. Isozyme variation in natural populations of Drosophila buzzatii. Evolution 30: 213–233.

    Google Scholar 

  • Barker, J. S. F., F. de M., Sene, P. D., East & M. A. Q. R., Pereira, 1985. Allozyme and chromosomal polymorphism of Drosophila buzzatii in Brazil and Argentina. Genetica 67: 161–170.

    Google Scholar 

  • Barker, J. S. F., D. C., Vacek, P. D., East & W. T., Starmer, 1986. Allozyme genotypes of Drosophila buzzatii: feeding and oviposition preferences for microbial species, and habitat selection. Aust. J. Biol. Sci. 39: 47–58.

    Google Scholar 

  • Brady, J. P. & R. C., Richmond, 1992. An evolutionary model for the duplication and divergence of esterase genes in Drosophila. J. Mol. Evol. 34: 506–521.

    Google Scholar 

  • Chambers, G. K., W. G., Laver, S., Campbell & J. B., Gibson, 1981. Structural analysis of an electrophoretically cryptic alcohol dehydrogenase variant from an Australian population of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 78: 3103–3107.

    Google Scholar 

  • Cochrane, B. J. & R. C., Richmond, 1979. Studies of esterase 6 in Drosophila melanogaster. I. The genetics of a posttranslational modification. Biochem. Genet. 17: 167–183.

    Google Scholar 

  • Collett, C., K. M., Nielsen, R. J., Russell, M., Karl, J. G., Oakeshott & R. C., Richmond, 1990. Molecular analysis of duplicated esterase genes in Drosophila melanogaster. Mol. Biol. Evol. 7: 9–28.

    Google Scholar 

  • Cooke, P. H. & J. G., Oakeshott, 1989. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 86: 1426–1430.

    Google Scholar 

  • Cooke, P. H., R. C., Richmond & J. G., Oakeshott, 1987. High resolution electrophoretic variation at the esterase-6 locus in a natural population of Drosophila melanogaster. Heredity 59: 259–264.

    Google Scholar 

  • Coyne, J. A., 1982. Gel electrophoresis and cryptic protein variation, pp. 1–32 in Isozymes: Current Topics in Biological and Medical Research. Vol. 6, edited by M. C., Rattazzi, J. G., Scandalios & G. S., Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Dodd, A. P., 1940. The Biological Campaign against Prickly Dear. S. G. Reid, Government Printer, Brisbane.

    Google Scholar 

  • East, P. D., 1982. Non-specific esterases of Drosophila buzzatii, pp. 323–338 in Ecological Genetics and Evolution. The cactusyeast-Drosophila model system, edited by J. S. F., Barker & W. T., Starmer. Academic Press Australia, Sydney.

    Google Scholar 

  • East, P. D., 1984. Biochemical genetics of two highly polymorphic esterases in Drosophila buzzatii. Ph.D. Thesis, University of New England, Armidale.

    Google Scholar 

  • Finnerty, V. & G., Johnson, 1979. Post-translational modification as a potential explanation of high levels of enzyme polymorphism: xanthine dehydrogenase and aldehyde oxidase in Drosophila melanogaster. Genetics 91: 695–722.

    Google Scholar 

  • Halliburton, R. & J. S. F., Barker, 1993. Lack of mitochondrial DNA variation in Australian Drosophila buzzatii. Mol. Biol. Evol. 10: 484–487.

    Google Scholar 

  • Keith, T. P., 1983. Frequency distribution of esterase-5 alleles in two populations of Drosophila pseudoobscura. Genetics 105: 135–155.

    Google Scholar 

  • Keith, T. P., L. D., Brooks, R. C., Lewontin, J. C., Martinez-Cruzado & D. L., Rigby, 1985. Nearly identical allelic distributions of xanthine dehydrogenase in two populations of Drosophila pseudoobscura. Mol. Biol. Evol. 2: 206–216.

    Google Scholar 

  • Knibb, W. R. & J. S. F., Barker, 1988. Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii II. Spatial variation. Aust. J. Biol. Sci. 41: 239–246.

    Google Scholar 

  • Knibb, W. R., P. D., East & J. S. F., Barker, 1987. Polymorphic inversion and esterase loci complex on chromosome 2 of Drosophila buzzatii. I. Linkage disequilibria. Aust. J. Biol. Sci. 40: 257–269.

    Google Scholar 

  • Kreitman, M., 1987. Molecular population genetics, pp. 38–60 in Oxford Surveys in Evolutionary Biology. Vol. 4, edited by P. H., Harvey & L., Partridge. Oxford University Press, Oxford.

    Google Scholar 

  • Labate, J., A., Bortoli, A. Y., Game, P. H., Cooke & J. G., Oakeshott, 1989. The number and distribution of esterase 6 alleles in populations of Drosophila melanogaster. Heredity 63: 203–208.

    Google Scholar 

  • Latter, B. D. H., 1973a. The island model of population differentiation: A general solution. Genetics 73: 147–157.

    Google Scholar 

  • Latter, B. D. H., 1973b. The estimation of genetic divergenea between populations based on gene frequency data. Am. J. Human Genet. 25: 247–261.

    Google Scholar 

  • Lewontin, R. C., 1985. Population genetics. Annu. Rev. Genet. 19: 81–102.

    Google Scholar 

  • Mann, J., 1970. Cacti Naturalized in Australia and their Control. S. G. Reid, Government Printer, Brisbane.

    Google Scholar 

  • Morton, R. A. & R. S., Singh, 1985. Biochemical properties, hemology, and genetic variation of Drosophila “nonspecific” esterases. Biochem. Genet. 23: 959–973.

    Google Scholar 

  • Mulley, J. C., J. W., James & J. S. F., Barker, 1979. Allozyme genotype-environment relationships in natural populations of Drosophila buzzatii. Biochem. Genet. 17: 105–126.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & W-H., Li, 1980. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet. Res. 35: 65–83.

    Google Scholar 

  • Nei, M., A., Chakravarti & Y., Tateno, 1977. Mean and variance of F ST in a finite number of incompletely isolated populations. Theor. Pop. Biol. 11: 291–306.

    Google Scholar 

  • Prakash, S., 1974. Gene differences between the sex ratio and standard gene arrangements of the X chromosome and linkage disequilibrium between loci in the standard gene arrangement of the X chromosome in Drosophila pseudoobscura. Genetics 77: 795–804.

    Google Scholar 

  • Riley, M. A., S. R., Kaplan & M., Veuille, 1992. Nucleotide polymorphism at the xanthine dehydrogenase locus in Drosophila pseudoobscura. Mol. Biol. Evol. 9: 56–69.

    Google Scholar 

  • Schafer, D. J., D. K., Fredline, W. R., Knibb, M. M., Green & J. S. F., Barker, 1993. Genetics and linkage mapping of Drosophila buzzatii. J. Hered. 84: 188–194.

    Google Scholar 

  • Singh, R. S., R. C., Lewontin & A. A., Felton, 1976. Genetic heterogeneity within electrophoretic “alleles” of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 84: 609–629.

    Google Scholar 

  • Sokal, R. R., N. L., Oden & J. S. F., Barker, 1987. Spatial structure in Drosophila buzzatii populations: Simple and directional spatial autocorrelation. Am. Nat. 129: 122–142.

    Google Scholar 

  • Spencer, H. G. & R. W., Marks, 1992. The maintenance of single-locus polymorphism. IV. Models with mutation from existing alleles. Genetics 130: 211–221.

    Google Scholar 

  • Starmer, W. T. & J. S. F., Barker, 1986. Ecological genetics of the Adh-1 locus of Drosophila buzzatii. Biol. J. Linn. Soc. 28: 373–385.

    Google Scholar 

  • Strobeck, C., 1983. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics 103: 545–555.

    Google Scholar 

  • Thomas, R. H. & J. S. F., Barker, 1993. Quantitative genetic analysis of the body size and shape of Drosophila buzzatii. Theor. Appl. Genet. 85: 598–608.

    Google Scholar 

  • Waples, R. S., 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121: 379–391.

    Google Scholar 

  • Watt, A. W., 1981. The genetics of temperature tolerance in Drosophila buzzatii, pp. 139–146 in Genetic Studies of Drosophila Populations, edited by J. B., Gibson & J. G., Oakeshott. Australian National University Press, Canberra.

    Google Scholar 

  • Watterson, G. A., 1977. Heterosis or neutrality? Genetics 85: 789–814.

    Google Scholar 

  • Watterson, G. A., 1978. The homozygosity test of neutrality. Genetics 88: 405–417.

    Google Scholar 

  • Watterson, G. A., 1986. The homozygosity test after a change in population size. Genetics 112: 899–907.

    Google Scholar 

  • Wright, S., 1943. The genetical structure of populations. Ann. Eugenics 15: 323–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, J.S.F. Sequential gel electrophoretic analysis of esterase-2 in two populations of Drosophila buzzatii . Genetica 92, 165–175 (1994). https://doi.org/10.1007/BF00132535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132535

Key words

Navigation