Skip to main content
Log in

Non-random patterns of non-disjunctional orientation in trivalents of multiple Robertsonian heterozygotes of Dichroplus pratensis (Acrididae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Metaphase I orientation of centric fusion trivalents was studied in 24 single, 19 double and 3 triple heterozygotes of Dichroplus pratensis. Different populations of this South American melanopline grasshopper are polymorphic for seven Robertsonian fusions, and the polymorphisms seem to be stable. Several cytogenetic factors involved in the orientation and segregation of the meiotic configurations such as chromosomal length, symmetry and number and position of chiasmata, have been analysed in previous works. In this paper we study another factor that is relevant in the above respect in individuals with more than one heterozygous fusion: interaction among configurations regarding orientation.

Our results indicate that, when there are two or three trivalents present in the MI cell, there is an interaction in such a way that the number of metaphases in which the two or three trivalents are non-disjunctionally oriented is always significantly higher than expected under a hypothesis of independence. However, the number of cells in which all trivalents are disjunctionally oriented does not decrease significantly, so an increase of unbalanced gametes due to this factor is not expected. The stability of the polymorphisms would thus not be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  • Arundhati, A., P.S.R.L., Narasinga Rao & J., Sybenga, 1986. Possible causes of variation in trivalent orientation frequencies in pearl millet and rye. Genetica 70: 81–87.

    Google Scholar 

  • Baker, R.J. & J.W., Bickham, 1986. Speciation by monobrachial centric fusions. Proc. Natl. Acad. Sci. USA 83: 8245–8248.

    Google Scholar 

  • Bennett, M.D., 1983. The spatial distribution of chromosomes. pp. 71–79 in Kew Chromosome Conf. II, edited by P.E., Brandham and M.D., Bennett. Allen & Unwin, London.

    Google Scholar 

  • Bennett, M.D., J.B., Smith, S., Simpson & B., Wells, 1979. Intranuclear fibrillar material in cereal pollen mother cells. Chromosoma 71: 289–332.

    Google Scholar 

  • Bidau, C.J., 1989. Zonas hibridas en ortopteros: el ejomplo de Dichroplus pratensis (Acrididae), pp. 109–124 in Proceedings I Congreso Argentino de Entomología, Tucumán, edited by Sociedad Argentina de Entomología.

  • Bidau, C.J., 1990. The complex Robertsonian system of Dichroplus pratensis (Melanoplinae, Acrididae). II. Effects of the fusion polymorphisms on chiasma frequency and distribution. Heredity 64: 145–159.

    Google Scholar 

  • Bidau, C.J., 1991. Multivalents resulting from monobrachial homologies within a hybrid zone in Dichroplus pratensis (Acrididae): meiotic orientation and segregation. Heredity 66: 219–232.

    Google Scholar 

  • Bidau, C.J., 1993. Causes of chiasma repatterning due to centric fusions. Brazil. J. Genet. 16(2): 283–296.

    Google Scholar 

  • Bidau, C.J. & P.M., Mirol, 1988. Orientation and segregation of Robertsonian trivalents in Dichroplus pratensis (Melanoplinae, Acrididae). Genome 30: 947–955.

    Google Scholar 

  • Bidau, C.J., C., Belinco, P.M., Mirol & D.S., Tosto, 1991. The complex Robertsonian system of Dichroplus pratensis (Melanoplinae, Acrididae). I. Geoghraphic distribution of fusion polymorphisms. Genetique, Selection, Evolution 23: 353–370.

    Google Scholar 

  • Bruére, A.N., I.S., Scott & L.M., Henderson, 1981. Aneuploid spermatocyte frequency in domestic sheep heterozygous for three Robertsonian translocations. J. Reprod. Fert. 63: 61–66.

    Google Scholar 

  • Capanna, E., 1982. Robertsonian numerical variation in animal speciation: Mus musculus,an emblematic model. pp. 155–177 in Mechanisms of Speciation, edited by C., Barigozzi, Alan R. Liss, New York.

    Google Scholar 

  • Church, K., 1977. Chromosome ends and the nuclear envelope at premeiotic interphase in the male grasshopper Brachystola magna by 3-D E.M. reconstruction. Chromosoma 64: 143–154.

    Google Scholar 

  • Church, K. & P.B., Moens, 1976. Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D, E.M. reconstruction. Chromosoma 56: 249–263.

    Google Scholar 

  • Colombo, P.C., 1987. Effect of centric fusions on chiasma frequency and position in Leptysma argentina. I. Sponteneous and stable polymorphic centric fusions. Genetica 72: 171–179.

    Google Scholar 

  • Del, Fosse, F.E. & K., Church, 1981. Presynaptic chromosome behavior in Lillium. I. Centromere orientation and movement during premeiotic interphase in Lillium speciosum cv. Rosemede. Chromosoma 81: 701–716.

    Google Scholar 

  • Pussell, C.P., 1987. The Rabl orientation: a prelude to synapsis, pp. 275–299 in Meiosis, edited by P.B., Moens. Academic Press, Orlando, FL.

    Google Scholar 

  • Hewitt, G.M., 1979. Orthoptera, pp. 1–170 in Animal Cytogenetics 3. Insecta 1, edited by B., John. Gebrüder Borntraeger, Berlin-Stuttgart.

    Google Scholar 

  • John, B., 1981. Chromosome change and evolutionary change: a critique, pp. 23–51 in Evolution and Speciation, edited by W.R., Atchley and D.S., Woodruff. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • John, B., 1983. The role of chromosome change in the evolution of orthopteroid insects, pp. 1–110 in Chromosomes in the Evolution of Eukaryotes, Vol. 1, edited by A.K., Sharma and A.S., Sharma. CRC Press, Boca Raton.

    Google Scholar 

  • John, B., 1987. The orientation behavior of multiple chromosome configurations in Acridid grasshoppers. Genome 29: 292–308.

    Google Scholar 

  • John, B., 1990. Meiosis. The University Press, Cambridge.

    Google Scholar 

  • King, M., 1987. Chromosomal rearrangements, speciation and the theoretical approach. Heredity 59: 1–6.

    Google Scholar 

  • King, M., 1993. Species Evolution. The Role of Chromosome Change. The University Press, Cambridge.

    Google Scholar 

  • Lande, R., 1979. Effective deme size during long-term evolution estimated from rates of chromosomal rearrangements. Evolution 33(1): 234–251.

    Google Scholar 

  • Loidl, J., 1990. The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778.

    Google Scholar 

  • López-Fernández, C., J.S., Rufas, C., García de la Vega & J., Gosálvez, 1984. Cytogenetic studies on Chorthippus jucundus (Fisch.). (Orthoptera). III. The meiotic consequences of a spontaneous centric fusion. Genetica 63: 3–7.

    Google Scholar 

  • Mirol, P.M. & C.J., Bidau, 1991. Meiotic behavior of Robertsonian heterozygotes in populations of Dichroplus pratensis (Acrididae) with different fusion frequencies. Genetica 84: 171–178.

    Google Scholar 

  • Mirol, P.M. & C.J., Bidau, 1992. Proximal chiasmata induce non-disjunctional orientation of Robertsonian trivalents in a grasshopper. Heredity 69: 268–278.

    Google Scholar 

  • Moens, P.B., 1969. The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma 28: 1–25

    Google Scholar 

  • Narasinga Rao, P.S.R.L. & J., Sybenga, 1984. Linear orientation of trivalents and quadrivalents in late metaphase I pollen mother cells of pearl millet. Can. J. Genet. Cytol. 26: 506–510.

    Google Scholar 

  • Rabl, C., 1885. Über Zelltheitung. Morphol. Jahrb. 10: 214–330.

    Google Scholar 

  • Redi, C. & E., Capanna, 1988. Robertsonian heterozygotes in the house mouse and the fate of their germ cells pp. 315–359 in The Cytogenetics of Mammalian Autosomal Rearrangements, edited by A., Danlel. Alan R. Liss, New York.

    Google Scholar 

  • Rickards, G.K., 1977. Prometaphase I and anaphase I in an interchange heterozygote of Allium triquetrum (Liliacene). Chromosoma 64: 1–23.

    Google Scholar 

  • Rickards, G.K., 1983. Orientation behavior of chromosome multiples of interchange (reciprocal translocation) heterozygotes. Ann. Rev. Genet. 17: 443–498.

    Google Scholar 

  • Searle, J.B., 1986. Factors responsible for a karyotypic polymorphism in the common shrew, Sorex araneus. Proc. R. Soc. London B. 229: 277–298.

    Google Scholar 

  • Searle, J.B., 1988. Selection and Robertsonian variation in nature: the case of the common shrew, pp. 507–531 in The Cytogenetics of Mammalian Autosomal Rearrangements, edited by A., Daniel. Alan R. Liss, New York.

    Google Scholar 

  • Sites, J.W. & C., Moritz, 1987. Chromosomal evolution and speciation revisited. Syst. Zool. 36(2): 153–174.

    Google Scholar 

  • Sybenga, J., 1975. Meiotic Configurations. Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  • Sybenga, J. & G.K., Rickards, 1987. The orientation of multivalents at meiotic metaphase I: a workshop report. Genome 29: 612–620.

    Google Scholar 

  • Teoh, S.B. & M.S., Yong, 1983. A spontaneous fusion heterozygote in the tropical grasshopper, Valanga nigricornis (Burmeister). Caryologia 36: 165–173.

    Google Scholar 

  • Tosto, D.S. & C.J., Bidau, 1991. Distribution of chromosome frequencies within a hybrid zone of Dichroplus pratensis (Melanoplinae, Acrididae). Heredity 67: 299–306.

    Google Scholar 

  • White, B.J., C., Crandall, E.S., Raveché & J.H., Tjio, 1978. Laboratory mice carrying three pairs of Robertsonian translocations: establishment of a strain and analysis of melotic segregation. Cytogenet. Cell Genet. 21: 113–138.

    Google Scholar 

  • White, B.J., J.H., Tjio, L.C.Van de, Water & C., Crandall, 1972. Studies of mice with a balanced complement of 36 chromosomes derived from F1 hybrids of T1Wh and T1Ald translocation homozygotes. Proc. Natl. Acad. Sci. USA 69: 2757–2761.

    Google Scholar 

  • White, M.J.D., 1978. Modes of Speciation. W.H. Freeman, San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Both authors are affiliated with the CONICET (Argentina)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirol, P.M., Bidau, C.J. Non-random patterns of non-disjunctional orientation in trivalents of multiple Robertsonian heterozygotes of Dichroplus pratensis (Acrididae). Genetica 92, 155–164 (1994). https://doi.org/10.1007/BF00132534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132534

Key words

Navigation