Skip to main content
Log in

Apparent overdominance of enzyme specific activity in two marine bivalves

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Electrophoretic examination of a natural population sample of 332 mussels (Mytilus trossulus) revealed ten active allozyme alleles for the octopine dehydrogenase (Odh) locus and a statistically significant (P<0.005) departure from expected genotypic proportions caused by a deficiency of heterozygous genotypes. In vitro specific activity for octopine dehydrogenase (E.C. 1.5.1.11) was determined for 207 mussels representing 17 different Odh genotypes. Odh heterozygotes had an average specific activity that was 19% greater than that of apparently homozygous genotypes, a significant (P<0.05) difference. Electrophoretic examination of a natural population sample of 209 oysters (Crassostrea virginica) revealed 23 active allozyme alleles for the leucine aminopeptidase-2 (Lap-2) locus and a non-significant (P>0.05) deficiency of heterozygous genotypes. In vitro specific activity for leucine aminopeptidase (E.C. 3.4.-.-) was determined for 89 oysters representing 19 different Lap-2 genotypes. Lap-2 heterozygotes had an average specific activity that was 56% greater than that of homozygous genotypes, a significant (P<0.0001) difference. Possible explanations for the apparent overdominance in enzyme specific activity and the deficiency of heterozygotes include null alleles, molecular imprinting and aneuploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Bulnheim, H. P. & Gosling, E., 1988. Population genetic structure of mussels from the Baltic sea. Helgolander Meeresunters. 42: 113–129.

    Google Scholar 

  • Chakraborty, R., 1989. Can molecular imprinting explain heterozygote deficiency and hybrid vigor? Genetics 122: 713–717.

    Google Scholar 

  • Foltz, D. W., 1986a. Null alleles as a possible cause of heterozygote deficiences in the oyster Crassostrea virginica and other bivalves. Evolution 40: 869–870.

    Google Scholar 

  • Foltz, D. W., 1986b. Segretation and linkage studies of allozyme loci in pair crosses of the oyster Crassostrea virginica. Biochem. Genet. 24: 941–956.

    Google Scholar 

  • Gäde, G. & Grieshaber, M., 1975. Partial purification and properties of octopine dehydrogenase and the formation of octopine in Anodonta cygnea L. J. comp. Physiol. 102: 149–158.

    Google Scholar 

  • Gäde, G. & Grieshaber, M. K., 1986. Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates. Comp. Biochem. Physiol. 83B: 255–272.

    Google Scholar 

  • Gaffney, P. M., Scott, T. M., Koehn, R. K. & Diehl, W. J., 1990. Interrelationships of heterozygosity, growth rate and heterozygote deficiencies in the coot clam, Mulinia lateralis. Genetics 124: 687–699.

    Google Scholar 

  • Gart, J. J. & Nam, J., 1988. The equivalence of two tests and models for HLA data with no observed double blanks. Biometrics 44: 869–873.

    Google Scholar 

  • Gillespie, J. H. & Langley, C. H., 1974. A general model to account for enzyme variation in natural populations. Genetics 76: 837–848.

    Google Scholar 

  • Gosling, E. M., 1989. Genetic heterozygosity and growth rate in a cohort of Mytilus edulis from the Irish coast. Mar. Biol. 100: 211–215.

    Google Scholar 

  • Hedrick, P. W., 1985. Genetics of populations. Jones & Bartlett, Boston.

    Google Scholar 

  • Hilbish, T. J. & Koehn, R. K., 1985. Dominance in physiological phenotypes and fitness at an enzyme locus. Science 229: 52–54.

    Google Scholar 

  • Kaeser, H. & Burns, J. A., 1981. The molecular basis of dominance. Genetics 97: 639–666.

    Google Scholar 

  • Katoh, M. & Foltz, D. W., 1989. Biochemical evidence for the existence of a null allele at the leucine aminopeptidase-2 (Lap-2) locus in the oyster Crassostrea virginica (Gmelin). Genome 32: 687–690.

    Google Scholar 

  • Koehn, R. K., 1991. The genetics and taxonomy of species in the genus Mytilus. Aquaculture 94: 125–145.

    Google Scholar 

  • Koehn, R. K. & Gaffney, P. M., 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82: 1–7.

    Google Scholar 

  • Koehn, R. K., Bayne, B. L., Moore, M. N. & Siebenaller, J. F., 1980. Salinity related physiological and genetic differences between populations of Mytilus edulis. Biol. J. Linn. Soc. 14: 319–334.

    Google Scholar 

  • Mallet, A. L., Zouros, E., Gartner-Kepkay, K. E., Freeman, K. R. & Dickie, L. M., 1985. Larval viability and heterozygote deficiency in populations of marine bivalves: evidence from pair matings of mussels. Mar. Biol. 87: 165–172.

    Google Scholar 

  • McDonald, J. H. & Koehn, R. K., 1988. The mussels Mytilus galloprovincialis and M. trossulus on the Pacific coast of North America. Mar. Biol. 99: 111–118.

    Google Scholar 

  • McPherson, G. A., 1985. Analysis of radioligand binding experiments: a collection of computer programs for the IBM PC. J. Pharmacol. Meth. 14: 213–228.

    Google Scholar 

  • Mitton, J. B. & Grant, M. C., 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.

    Google Scholar 

  • Paigen, K., 1979. Acid hydrolases as models of genetic control. Ann. Rev. Genet. 13: 417–466.

    Google Scholar 

  • Pogson, G. H., 1989. Biochemical characterization of genotypes at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas. Biochem. Genet. 27: 571–589.

    Google Scholar 

  • Pogson, G. H., 1991. Expression of overdominance for specific activity at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas. Genetics 128: 133–141.

    Google Scholar 

  • Read, S. M. & Northcote, D. H., 1981. Minimization of variation in the response to different proteins of the Coomassie Blue G dye-binding assay for protein. Anal. Biochem. 116: 53–64.

    Google Scholar 

  • Reed, T. E. & Schull, W. J., 1968. A general maximum likelihood estimation program. Amer. J. Hum. Genet. 20: 579–580.

    Google Scholar 

  • Sarver, S. K. & Loudenslager, E. J., 1991. The genetics of California populations of the blue mussel: further evidence for the existence of electrophoretically distinguishable species or subspecies. Biochem. Syst. Ecol. 19: 183–188.

    Google Scholar 

  • SAS, 1985. SAS User's Guide: Statistics. Version 5 Edition. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B., 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud. Genet. 6: 49–90.

    Google Scholar 

  • Singh, S. M. & Zouros, E., 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32: 342–353.

    Google Scholar 

  • Skibinski, D. O. F., Beardmore, J. A. & Cross, T. F., 1983. Aspects of the population genetics of Mytilus (Mytilidae; Mollusca) in the British Isles. Biol. J. Linn. Soc. 19: 137–183.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry, second edition. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • Thiriot-Quievreux, C., 1984. Karyotypes of some Ostreidae and Mytilidae (Bivalvia). Malacologia 25: 465–476.

    Google Scholar 

  • Thiriot-Quievreux, C., 1986. Study of aneuploidy in spats of Ostreidae (Bivalvia). Genetica 70: 225–231.

    Google Scholar 

  • Thiriot-Quievreux, C., Noel, T., Bougrier, S. & Dallot, S., 1988. Relationships between aneuploidy and growth rate in pair matings of the oyster Crassostrea gigas. Aquaculture 75: 89–96.

    Google Scholar 

  • Young, J. P. W., Koehn, R. K. & Arnheim, N., 1979. Biochemical characterization of ‘LAP’, a polymorphic aminopeptidase from the blue mussel, Mytilus edulis. Biochem. Genet. 17: 305–323.

    Google Scholar 

  • Zouros, E., 1987. On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine mollusks. Isozymes 15: 255–270.

    Google Scholar 

  • Zouros, E. & Foltz, D. W., 1984. Possible explanations of heterozygote deficiency in bivalve molluses. Malacologia 25: 583–591.

    Google Scholar 

  • Zouros, E. & Foltz, D. W., 1987. The use of allelic isozyme variation for the study of heterosis. Isozymes 13: 1–59.

    Google Scholar 

  • Zouros, E., Romero-Dorey, M. & Mallet, A. L., 1988. Heterozygosity and growth in marine bivalves: further data and possible explanations. Evolution 42: 1332–1341.

    Google Scholar 

  • Zouros, E., Singh, S. M. & Miles, H. E., 1980. Growth rate in oysters: an overdominant phenotype and its possible explanations. Evolution 34: 856–867.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarver, S.K., Katoh, M. & Foltz, D.W. Apparent overdominance of enzyme specific activity in two marine bivalves. Genetica 85, 231–239 (1992). https://doi.org/10.1007/BF00132275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00132275

Key words

Navigation