Skip to main content
Log in

On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

We present a theory for the formation of frozen aerosol particles in the Antarctic stratosphere, the coldest region of the Earth's stratosphere. The theory is applied specifically to the formation of polar stratospheric clouds. We suggest that the condensed ices are composed primarily of nitric acid and water with small admixtures of other compounds such as H2SO4 and HCl in solid solution. Our assumed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinctions observed in the winter polar stratosphere. Physical chemistry and thermodynamic considerations suggest that at temperatures between about 200 and 185 K, stratospheric particulates are composed primarily of frozen nitric acid solutions with a composition near that of the trihydrate. Available data suggest the particles are amorphous solid solutions and not in the crystalline hydrate form. At lower temperatures (i.e., below the forst point of pure water) cirrus-like ice clouds can form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AtkinsR. W., 1978, Physical Chemistry, W. H. Freeman, San Francisco, p. 228.

    Google Scholar 

  • J.-L.Clavelin and MirabelP., 1979, Determination des pressions partielles du mélange eau-acide nitrique, J. Chimie Physique 76, 533–537.

    Google Scholar 

  • CrutzenP. J. and ArnoldF., 1986, Nitric acid cloud formation in the cold Antarctic strtosphere: A major cause for the springtime ‘ozone hole’, Nature 324, 651–655.

    Google Scholar 

  • Ferry, G. V. and Lem, H. Y., 1974, Aerosols at 20 kilometers altitude, Preprints, 2nd International Conference on the Environmental Impact of Aerospace Operations in the High Atmosphere, San Diego CA, American Meteorological Society, pp. 27–33.

  • FarmanJ. C., GardnerB. G., and ShanklinJ. D., 1985, Large losses of total ozone in Antarctica reveal seasonal ClO x /No x interaction, Nature 315, 207–210.

    Google Scholar 

  • FindlayAlexander, 1951, The Phase Rule and its Applications, Dover, New York, p. 224.

    Google Scholar 

  • GableC. M., BetzH. F., and MaronS. H., 1950, Phase equilibria of the system sulfur trioxide-water, J. Amer. Chem. Soc. 72, 1445–1448.

    Google Scholar 

  • HamillPatrick, 1975, The time dependent growth of H2O-H2SO4 aerosols by heteromolecular condensation, J. Aerosol. Sci. 6, 475–482.

    Google Scholar 

  • HamillPatrick, ToonO. B., and TurcoR. P., 1986, Characteristics of polar stratospheric clouds during the formation of the antarctic ozone hole, Geophys. Res. Lett. 13, 1288–1291.

    Google Scholar 

  • HuntenD. M., TurcoR. P., and ToonO. B., 1980, Smoke and dust part particles of meteoric origin on the mesosphere and stratosphere, J. Atmos. Sci. 37, 1342–1357.

    Google Scholar 

  • HustonTheresa, HisatuneI. C., and HeicklenJulien, 1983, Low-temperature infrared studies of some acid-base reactions, Can. J. Chem. 61, 2077–2088.

    Google Scholar 

  • KentG. S., PooleL. R., and McCormickM. P., 1986, Characteristics of arctic polar stratospheric clouds as measured by airborne lidar, J. Atmos. Sci. 43, 2149–2161.

    Google Scholar 

  • KunzlerJ. E. and GiauqueW. F., 1952, The freezing point curves of concentrated aqueous sulfuric acid, J. Amer. Chem. Soc. 74, 5271–5274.

    Google Scholar 

  • KusterF. W. and R.Kremann, 1904, Uber die Hydrate der saltpetersäure, Zeitschrift Anorg. Chemie 41, 1–42.

    Google Scholar 

  • MasonB. J., 1971, The Physics of Clouds, 2nd edn., Oxford Univ. Press, London, p. 173.

    Google Scholar 

  • McCormickM. P., SteeleH. M., HamillPatrick, ChuW. P., and SwisslerT. J., 1982, Polar stratospheric cloud sightings by SAM II, J. Atmos. Sci. 39, 1387–1397.

    Google Scholar 

  • McElroyM. B., SalawitchR. J., WofsyS. C., and LoganJ. A., 1986a, Reduction of Antarctic ozone due to synergistic interactions of chlorine and bromine, Nature 321, 759–762.

    Google Scholar 

  • McElroyM. B., SalawitchR. J., and WofsyS. C., 1986b, Antarctic O3: Chemical mechanisms for the spring decrease, Geophys. Res. Lett. 13, 1296–1299.

    Google Scholar 

  • McGrawG. E., BernittD. L., and HisatuneI. C., 1965, Vibrational spectra of isotopic nitric acids, J. Chem. Phys. 42, 237–244.

    Google Scholar 

  • PickeringS. U., 1893, Isolation of two predicted hydrates of nitric acid, J. Chem. Soc. 63, 436–443.

    Google Scholar 

  • PruppacherH. R. and KlettJ. D., 1980, Microphysics of Clouds and Precipitation, D. Reidel, Dordrecht, pp. 102–103.

    Google Scholar 

  • RosenJ. M., 1971, The boiling point of stratospheric aerosols, J. Appl. Meteor. 10, 1044–1046.

    Google Scholar 

  • SolomonS., GarciaR. R., RowlandF. S., and WuebblesD. J., 1886, On the depletion of Antarctic ozone, Nature 321, 755–758.

    Google Scholar 

  • SteeleH. M. and HamillPatrick, 1981, Effects of temperature and humidity on the growth and optical properties of sulphuric acid-water droplets in the stratosphere, J. Aerosol. Sci. 12, 517–528.

    Google Scholar 

  • SteeleH. M., HamillPatrick, McCormickM. P., and SwisslerT. J., 1983, The formation of polar stratospheric clouds, J. Atmos. Sci. 40, 2055–2067.

    Google Scholar 

  • StolarskiR. S., KreugerA. J., SchoeberlM. R., McPetersR. D., NewmanP. A., and AlpertJ. C., 1986, Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease, Nature 322, 808–811.

    Google Scholar 

  • ToonO. B., HamillPatrick, TurcoR. P., and PintoJoseph, 1986, Condensation of HNO3 in the winter polar stratosphere, Geophys. Res. Lett. 13, 1284–1287.

    Google Scholar 

  • ToonO. B., TurcoR. P., HamillP., KiangC. S. and WhittenR. C., 1979, A one-dimensional model describing aerosol formation and evolution in the stratosphere: Part II. Sensitivity Studies and Comparisons with Observations, J. Atmos. Sci. 36, 718–736.

    Google Scholar 

  • TurcoR. P., ToonO. B., WhittenR. C., HamillP., and KiangC. S., 1979, A one-dimensional model describing aerosol formation and evolution in the stratosphere: Part I. Physical processes and mathematical analogs, J. Atmos. Sci. 36, 699–717.

    Google Scholar 

  • TurcoR. P., ToonO. B., HamillP., and WhittenR. C., 1981. Effects of meteoritic debris on stratospheric aerosols and gases J. Geophys. Res. 86, 1113–1128.

    Google Scholar 

  • Wofsy, S. C., Molina, M., Salawitch, R. J., Fox, L. E., and McElroy, M. B., 1987, Interaction between HCl, NO x and H2O ice in the antarctic stratosphere: Implications for ozone. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamill, P., Turco, R.P. & Toon, O.B. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions. J Atmos Chem 7, 287–315 (1988). https://doi.org/10.1007/BF00130934

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130934

Key words

Navigation