Biodegradation of polycyclic aromatic hydrocarbons

Abstract

The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

This is a preview of subscription content, access via your institution.

References

  1. Akhtar MN, Boyd DR, Thomas NJ, Koreeda M, Gibson DT, Mahadevan V & Jerina DM (1975) Absolute stereochemistry of the dihydroanthracene cis- and trans-1,2-diols produced from anthracene by mammals and bacteria. J. Chem. Soc. Perkin Trans. I: 2506–2511

    Google Scholar 

  2. Aronstein BN, Calvillo YM & Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25: 1728–1731

    Google Scholar 

  3. Atlas RM (1991) Microbial hydrocarbon degradation-Bioremediation of oil spills. J. Chem. Technol. Biotechnol. 52: 149–156

    Google Scholar 

  4. Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb. Ecol. 20: 197–209

    Google Scholar 

  5. Barnsley EA (1975) Bacterial degradation of fluoranthene and benzo[a]pyrene. Can. J. Microbiol. 21: 1004–1008

    Google Scholar 

  6. Barnsley EA (1976a) Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol. 125: 404–408

    Google Scholar 

  7. Barnsley EA (1976b) Naphthalene metabolism by Pseudomonas: the oxidation of 1,2-dihydroxynapthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxy-benzalpyruvate. Biochem. Biophys. Res. Commun. 72: 1116–1121

    Google Scholar 

  8. Barnsley EA (1983) Bacterial oxidation of naphthalene and phenanthrene. J. Bacteriol. 153: 1069–1071

    Google Scholar 

  9. Bauer JE & Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol. 50: 80–90

    Google Scholar 

  10. Bauer JE & Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on the degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54: 1649–1655

    Google Scholar 

  11. Boronin AM, Kochetkov VV & Skryabin GK (1980) Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Microbiol. Lett. 7: 249–252

    Google Scholar 

  12. Brusseau GA, Hsien-Chyang T, Hanson RS & Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29

    Google Scholar 

  13. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154–158

    Google Scholar 

  14. Bumpus JA, Tien M, Wright D & Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436

    Google Scholar 

  15. Cane PA & Williams PA (1982) The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains. Phenotypic changes correlated with structural modification of the plasmid PWW60–1. J. Gen. Microbiol. 128: 2281–2290

    Google Scholar 

  16. Catterall FA, Murray K & Williams PA (1971) The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed by the bacterial metabolism of naphthalene. Biochem. Biophys. Acta 237: 361–364

    Google Scholar 

  17. Cerniglia CE (1982) Initial reactions in the oxidation of anthracene by Cunninghamella elegans. J. Gen. Microbiol. 128: 2055–2061

    Google Scholar 

  18. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Laskin A (Ed) Advances in Applied Microbiology, Vol 30 (pp 31–71). Academic Press, New York

    Google Scholar 

  19. Cerniglia CE & Crow SA (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129: 9–13

    Google Scholar 

  20. Cerniglia CE & Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl. Environ. Microbiol. 34: 363–370

    Google Scholar 

  21. Cerniglia CE & Gibson DT (1978) Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. 186: 121–127

    Google Scholar 

  22. Cerniglia CE & Gibson DT (1979) Oxidation of benzo(a)pyrene by the filamentous fungus Cunninghamella elegans. J. Biol. Chem. 254: 12174–12180

    Google Scholar 

  23. Cerniglia CE & Gibson DT (1980a) Fungal oxidation of benzo (a)pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a) pyrene: evidence for the formation of a benzo(a)pyrene 7,8-diol-9,10-epoxide. J. Biol. Chem. 255: 5159–5163

    Google Scholar 

  24. Cerniglia CE & Gibson DT (1980b) Fungal oxidation of (±)-9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene: formation of diastereomeric benzo(a)pyrene 9,10-diol 7,8-epoxides. Proc. Natl. Acad. Sci. U.S.A. 77: 4554–4558

    Google Scholar 

  25. Cerniglia CE & Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (Ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (pp 41–68). CRC Press, Boca Raton, FL

    Google Scholar 

  26. Cerniglia CE & Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47: 119–124

    Google Scholar 

  27. Cerniglia CE, Hebert RL, Dodge RH, Szaniszlo PJ & Gibson DT (1978) Fungal transformation of naphthalene. Arch. Microbiol. 117: 135–143

    Google Scholar 

  28. Cerniglia CE, Gibson DT & Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum strain PR-6. Biochem. Biophys. Res. Commun. 88: 50–58

    Google Scholar 

  29. Cerniglia CE, Van Baalen C & Gibson DT (1980a) Metabolism of naphthalene by the blue-green alga, Oscillatoria sp., strain JCM. J. Gen. Microbiol. 116: 485–495

    Google Scholar 

  30. Cerniglia CE, Gibson DT & Van Baalen C (1980b) Algal oxidation of naphthalene. J. Gen. Microbiol. 116: 495–500

    Google Scholar 

  31. Cerniglia CE, Mahaffey W & Gibson DT (1980c) Fungal oxidation of benzo(a)pyrene: formation of (−)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by Cunninghamella elegans. Biochem. Biophys. Res. Commun. 94: 226–232

    Google Scholar 

  32. Cerniglia CE, Dodge RH & Gibson DT (1980d) Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot. Mar. 23: 121–124

    Google Scholar 

  33. Cerniglia CE, Gibson DT & Van Baalen C (1982) Aromatic hydrocarbon oxidation by diatoms isolated from the Kachemak Bay region of Alaska. J. Gen. Microbiol. 128: 987–990

    Google Scholar 

  34. Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK & Yang SK (1983a) Stereochemistry and evidence for an arene-oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem.-Biol. Interact. 44: 119–132

    Google Scholar 

  35. Cerniglia CE, Fu PP & Yang SK (1983b) Regio- and stereoselective metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans. Biochem. J. 216: 377–384

    Google Scholar 

  36. Cerniglia CE, Freeman JP & Evans FE (1984) Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol in Bacillus cereus. Arch. Microbiol. 138: 283–286

    Google Scholar 

  37. Cerniglia CE, White GL & Heflich RH (1985a) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch. Microbiol. 143: 105–110

    Google Scholar 

  38. Cerniglia CE, Freeman JP, White GL, Heflich RH & Miller DW (1985b) Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon, 1-nitropyrene. Appl. Environ. Microbiol. 50: 649–655

    Google Scholar 

  39. Cerniglia CE, Kelly DW, Freeman JP & Miller DW (1986) Microbial metabolism of pyrene. Chem.-Biol. Interact. 57: 203–216

    Google Scholar 

  40. Cerniglia CE, Campbell WL, Freeman JP & Evans FE (1989) Metabolism of phenanthrene by the fungus Cunninghamella elegans: identification of a novel metabolite. Appl. Environ. Microbiol. 55: 2275–2279

    Google Scholar 

  41. Cerniglia CE, Campbell WL, Fu PP, Freeman JP & Evans FE (1990) Stereoselective fungal metabolism of methylated anthracenes. Appl. Environ. Microbiol. 56: 661–668

    Google Scholar 

  42. Cerniglia CE, Sutherland JB & Crow SA (1992) Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G (Ed) Microbial Degradation of Natural Products (pp 193–217). VCH Press, Weinheim

    Google Scholar 

  43. Chapman PJ (1979) Degradation mechanisms In: Bourquin AW & Pritchard PH (Eds) Proceedings of the workshop: Microbial Degradation of Pollutants in Marine Environments (pp 28–66). U.S. Environmental Protection Agency, Gulf Breeze, FL

    Google Scholar 

  44. Cody TE, Radike MJ & Warshawsky D (1984) The phytotoxicity of benzo[a]pyrene in the green alga, Selenastrum capricornutum. Environ. Res. 35: 122–131

    Google Scholar 

  45. Colby J & Dalton H (1976) Some properties of a soluble methane monooxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157: 495–497

    Google Scholar 

  46. Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402

    Google Scholar 

  47. Colby J, Stirling DI & Dalton H (1978) Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171: 461–468

    Google Scholar 

  48. Colla A, Fiecchi A & Treccani V (1959) Ricerche sul metabolismo ossidativo microbico dell'antracene e del fenantrene. Ann. Microbiol. 9: 87–91

    Google Scholar 

  49. Connors MA & Barnsley EA (1982) Naphhalene plasmids in pseudomonads. J. Bacteriol. 149: 1096–1101

    Google Scholar 

  50. Dagley S (1971) Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 6: 1–46

    Google Scholar 

  51. Dagley S (1975) A biochemical approach to some problems of environmental pollution. Essays Biochem. 11: 81–138

    Google Scholar 

  52. Dalton H, Golding BT, Waters BW, Higgins R & Taylor JA (1981) Oxidations of cyclopropane, methylcyclopropane, and arenes with the mono-oxygenase system from Methylococcus capsulatus. J. Chem. Soc. Chem. Commun. 1981: 482–483

    Google Scholar 

  53. Davies JI & Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads Biochem. J. 91: 251–261

    Google Scholar 

  54. Dipple A, Cheng SC & Bigger CAH (1990) Polycyclic aromatic hydrocarbon carcinogens In: Pariza MW, Aeschbacher HU, Felton JS & Sato S (Eds) Mutagens and Carcinogens in the Diet (pp 109–127). Wiley-Liss, New York

    Google Scholar 

  55. Dua RD & Meera S (1981) Purification and characterization of naphthalene oxygenase from Corynebacterium renale. Eur. J. Biochem. 120: 461–465

    Google Scholar 

  56. Dunn NW & Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979.

    Google Scholar 

  57. Ellis B, Harold P & Kronberg H (1991) Bioremediation of a creosote contaminated site. Environ. Technol. 12: 447–459

    Google Scholar 

  58. Ensley BD & Gibson DT (1983) Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 155: 505–511

    Google Scholar 

  59. Ensley BD, Gibson DT & LaBorde LA (1982) Naphthalene dioxygenase: purification and properties of a termined oxygen component. J. Bacteriol. 149: 948–954

    Google Scholar 

  60. Ensley BD, Osslund TD, Joyce M & Simon MJ (1987) Expression and complementation of naphthalene dioxygenase activity in Escherichia coli. In: Hagedorn SR Hanson RS &Kunz DA (Eds) Microbial Metabolism and the Carbon Cycle (pp 437–455). Harwood Academic Publishers, New York

    Google Scholar 

  61. Evans WC, Fernley HN & Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads; the ring fission mechanism. Biochem. J. 95: 819–821

    Google Scholar 

  62. Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW & Jeffrey AM (1973) Mono-oxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch. Biochem. Biophys. 156: 97–103

    Google Scholar 

  63. Field JA, DeJong E, Costa GF & DeBont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58: 2219–2226

    Google Scholar 

  64. Foght JM & Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135–1141

    Google Scholar 

  65. Garcia-Valdes E, Cozar E, Rotger R, Lalucat J & Ursing J (1988) New naphthalene-degrading marine Pseudomonas strains. Apl. Environ. Microbiol. 54: 2478–2485

    Google Scholar 

  66. Ghosh DK & Mishra AK (1983) Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr. Microbiol. 9: 219–224

    Google Scholar 

  67. Ghosh DK, Dutta D, Samanta TB & Mishra AK (1983) Microsomal benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS: Assay and characterization of the enzyme system. Biochem. Biophys. Res. Commun. 113: 497–505

    Google Scholar 

  68. Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed). Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, New York

    Google Scholar 

  69. Gibson DT, Koch JR & Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653–2661

    Google Scholar 

  70. Gibson DT, Mahadevan V, Jerina DM, Yagi H & Yeh HJC (1975) Oxidation of the carcinogens benzo[a]pyrene and benz[a]anthracene to dihrdrodiols by a bacterium. Science 189: 295–297

    Google Scholar 

  71. Gibson DT, Zylstra GJ & Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1 In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds) Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 121–132). American Society for Microbiology, Washington, DC

    Google Scholar 

  72. Giger W & Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment; isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal. Chem. 46: 1663–1671

    Google Scholar 

  73. Gold MH, Wariishi H & Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR & Sonnet PE (Eds) Biocatalysis in Agricultural Biotechnology (pp 127–140). American Chemical Society, Washington, DC

    Google Scholar 

  74. Grbic-Galic D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260

    Google Scholar 

  75. Grosser RJ, Warshawsky D & Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene and carbazole in soils. Appl. Environ. Microbiol. 57: 3462–3469

    Google Scholar 

  76. Grund E, Denecke B & Eichenlaub R (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58: 1874–1877

    Google Scholar 

  77. Gschwend PM & Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45: 2359–2367

    Google Scholar 

  78. Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54: 937–944

    Google Scholar 

  79. Guerin WF & Jones GE (1989) Estuarine ecology of phenanthrene-degrading bacteria. Estuarine Coastal Shelf Sci. 29: 115–130

    Google Scholar 

  80. Haemmerli SD, Leisola MSA, Sanglard D & Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J. Biol. Chem. 261: 6900–6903

    Google Scholar 

  81. Haigler BE & Gibson DT (1990a) Purification and properties of NADH-ferredoxin NAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 457–464

    Google Scholar 

  82. Haigler BE & Gibson DT (1990b) Purification and properties of ferredoxin NAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 465–468

    Google Scholar 

  83. Hammel KE (1989) Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol. 11: 776–777

    Google Scholar 

  84. Hammel KE, Kalyanaraman B & Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporiumm. J. Biol. Chem. 261: 16948–16952

    Google Scholar 

  85. Hammel KE, Green B & Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc. Natl. Acad. Sci. 88: 10605–10608

    Google Scholar 

  86. Hammel KE, Gai ZG, Green B & Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 1831–1838

    Google Scholar 

  87. Heitkamp MA & Cerniglia CE (1987) The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystem. Environ. Toxicol. Chem. 6: 535–546

    Google Scholar 

  88. Heitkamp MA & Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614

    Google Scholar 

  89. Heitkamp MA & Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55: 1968–1973

    Google Scholar 

  90. Heitkamp MA, Freeman JP & Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl. Environ. Microbiol. 53: 129–136

    Google Scholar 

  91. Heitkamp MA, Franklin W & Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2556–2565

    Google Scholar 

  92. Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1991) Biodegradation of 1-nitropyrene. Arch. Microbiol. 156: 223–230

    Google Scholar 

  93. Herbes SE & Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments. Appl. Environ. Microbiol. 35: 306–316.

    Google Scholar 

  94. Hites RA, LaFlamme RE & Farrington JW (1977) Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science 198: 829–831

    Google Scholar 

  95. Hites RA, LaFlamme RE & Windsor JG (1980) Polycyclic aromatic hydrocarbons in marine/aquatic sediments: their ubiquity. In: Petrakis L & Weiss FT (Eds) Petroleum in the Marine Environment (pp 289–311). Advances in Chemistry Series, American Chemical Society, Washington, DC

    Google Scholar 

  96. Holland HL, Khan SH, Richards D & Riemland E (1986) Biotransformation of polycyclic aromatic compounds by fungi. Xenobiotica 16: 733–741

    Google Scholar 

  97. Jacob J, Karcher W, Belliardo JJ & Wagstaffe PJ (1986) Polycyclic aromatic hydrocarbons of environmental and occupational importance. Fresenius, Z. Anal. Chem. 323: 1–10

    Google Scholar 

  98. Jeffrey AM, Yeh HJC, Jerina DM, Patel RT, Davey JF & Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14: 575–584

    Google Scholar 

  99. Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V & Gibson DT (1976) Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98: 5988–5996

    Google Scholar 

  100. Johnson AC & Larsen D (1985) The distribution of polycyclic aromatic hydrocarbons in the surficial sedimentsss of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide. Mar. Environ. Res. 15: 1–16

    Google Scholar 

  101. Jones KC, Stratford A, Waterhouse KS & Vogt NB (1989) Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 13: 540–550

    Google Scholar 

  102. Keck J, Sims RC, Coover M, Park K & Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Wat. Res. 23: 1467–1476

    Google Scholar 

  103. Keith LH & Telliard WA (1979) Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416–423

    Google Scholar 

  104. Kelley I & Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J. Ind. Microbiol. 7: 19–26

    Google Scholar 

  105. Kelley I, Freeman JP & Cerniglia CE (1991a) Identification of metabolites from the degradation of naphthalene by a Mycobacterium sp. Biodegradation 1: 283–290

    Google Scholar 

  106. Kelley I, Freeman JP, Evans FE & Cerniglia CE (1991b) Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl. Environ. Microbiol. 57: 636–641

    Google Scholar 

  107. Keuth S & Rehm H-J (1991) Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol. 34: 804–808

    Google Scholar 

  108. Kiyohara H & Nagao K (1978) The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol. 105: 69–75

    Google Scholar 

  109. Kiyohara H, Nagao K & Nomi R (1976) Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric. Biol. Chem. 40: 1075–1082

    Google Scholar 

  110. Kiyohara H, Nagao K, Kouno K & Yano K (1982) Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43: 458–461

    Google Scholar 

  111. Kiyohara H, Takizawa N, Date H, Torigoe S & Yano K (1990) Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J. Ferment. Bioeng. 69: 54–56

    Google Scholar 

  112. Kuhm AE, Stolz A & Knackmuss HJ (1991) Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation 2: 115–120

    Google Scholar 

  113. LaFlamme RE & Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediment. Geochim. Cosmochim. Acta 42: 289–303

    Google Scholar 

  114. Lijinsky W (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251–261

    Google Scholar 

  115. Lin WS & Kapoor M (1979) Induction of aryl hydrocarbon hydroxylase in Neurospora crassa by benzo[a]pyrene. Curr. Microbiol. 3: 177–181

    Google Scholar 

  116. Lindquist B & Warshawsky D (1985) Identification of the 11,12-dihydroxybenzo[a]pyrene as a major metabolite produced by the green alga, Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 130: 71–75

    Google Scholar 

  117. Mahaffey WR, Gibson DT & Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415–2423

    Google Scholar 

  118. Manilal VB & Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 35: 401–405

    Google Scholar 

  119. McMillan DC, Fu PP & Cerniglia CE (1987) Stereoselective fungal metabolism of 7,12-dimethylbenz[a]anthracene: identification and enantiomeric resolution of a K-region dihydrodiol. Appl. Environ. Microbiol. 53: 2560–2566

    Google Scholar 

  120. McMillan DC, Fu PP, Freeman JP, Miller DW & Cerniglia CE (1988) Microbial metabolism and detoxification of 7,12-dimethylbenz[a]anthracene. J. Ind. Microbiol. 3: 211–225

    Google Scholar 

  121. Means JC, Ward SG, Hassett JJ & Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14: 1524–1528

    Google Scholar 

  122. Mihelcic JR & Luthy RG (1987) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 53: 1182–1187

    Google Scholar 

  123. Mihelcic JR & Luthy RG (1988) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198

    Google Scholar 

  124. Miller EC & Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47: 2327–2345

    Google Scholar 

  125. Morgan P, Lewis ST & Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34: 693–696

    Google Scholar 

  126. Mueller JG, Chapman PJ & Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55: 3085–3090

    Google Scholar 

  127. Mueller JG, Chapman PJ, Blattmann BO & Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079–1086

    Google Scholar 

  128. Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992a) Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl. Environ. Microbiol. 58: 1360–1363

    Google Scholar 

  129. Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum, strain PR-6. Appl. Environ. Microbiol. 58: 1351–1359

    Google Scholar 

  130. Park KS, Sims RC, Dupont RR, Doucette WJ & Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ. Toxicol. Chem. 9: 187–195

    Google Scholar 

  131. Patel TR & Gibson DT (1974) Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol. 119: 879–888

    Google Scholar 

  132. Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl. Environ. Microbiol. 56: 2974–2983

    Google Scholar 

  133. Pothuluri JV, Heflich RH, Fu PP & Cerniglia CE (1992a) Fungal metabolism and detoxification of fluoranthene. Appl. Environ. Microbiol. 58: 937–941

    Google Scholar 

  134. Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1992b) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl. Environ. Microbiol. 58: 3654–3659

    Google Scholar 

  135. Ryu BH, Oh YK & Bin JH (1989) Biodegradation of naphthalene by Acinetobacter calcoaceticus R-88. J. Kor. Agric. Chem. Soc. 32: 315–320

    Google Scholar 

  136. Sanglard D, Leisola MSA & Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8: 209–212

    Google Scholar 

  137. Savino A & Lollini MN (1977) Identification of some fermentation products of phenanthrene in microorganisms of the genus Arthrobacter. Boll. Soc. Ital. Biol. Sper. 53: 916–921

    Google Scholar 

  138. Schell MA (1983) Cloning and expression in Escherichia coli of the naphthalene degradative genes from plasmid NAH7. J. Bacteriol. 153: 822–829

    Google Scholar 

  139. Schocken MJ & Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol. 48: 10–16

    Google Scholar 

  140. Serdar CM & Gibson DT (1989) Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem. Biophys. Res. Commun. 164: 772–779

    Google Scholar 

  141. Shiaris MP (1989) Phenanthrene mineralization along a natural salinity gradient in an urban estuary, Boston Harbor, Massachusetts. Microb. Ecol. 18: 135–146

    Google Scholar 

  142. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suen W-C, Cruden DL, Gibson DT & Zylstra GJ (1992) Nucleotide sequences encoding the genes for naphthalene dioxygenase in Pseudomonas putida G7 and Pseudomonas sp. NCIB 9816-4. Gene (in press)

  143. Sims JL, Sims RC & Matthews JE (1990) Approach to bioremediation of contaminated soil. Haz. Waste Haz. Mater. 7: 117–149

    Google Scholar 

  144. Smith RV & Rosazza JP (1974) Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551–558

    Google Scholar 

  145. Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind. Microbiol. 9: 53–62

    Google Scholar 

  146. Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW & Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavorirens. Arch. Microbiol. 154: 260–266

    Google Scholar 

  147. Sutherland JB, Selby AL, Freeman JP, Evans FE & Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 57: 3310–3316

    Google Scholar 

  148. Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW & Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol. Res. 96: 509–517

    Google Scholar 

  149. Tagger S, Truffaut N & Le Petit J (1990) Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from marine sediment. Can. J. Microbiol. 36: 676–681

    Google Scholar 

  150. Tattersfield F (1927) The decomposition of naphthalene in the soil and the effect upon its insecticidal action. Ann. Appl. Biol. 15: 57–67

    Google Scholar 

  151. Tausson WO (1927) Napthalin als Kohlenstoffquelle für Bakterien. Planta 4: 214–256

    Google Scholar 

  152. Thakker DR, Yagi H, Levin W, Wood AW, Conney AH & Jerina DM (1985) Polycyclic aromatic hydrocarbons: Metabolic activation to ultimate carcinogens. In: Anders MW (Ed) Bioactivation of Foreign Compounds (pp 177–242). Academic Press, Orlando

    Google Scholar 

  153. Treccani V, Walker N & Wiltshire GH (1954) The metabolism of naphthalene by soil bacteria. J. Gen. Microbiol. 11: 341–348

    Google Scholar 

  154. Trower MK, Sariaslani FS & Kitson FG (1988) Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem. Biophys. Res. Commun. 3: 1417–1422

    Google Scholar 

  155. Utkin IB, Yakimov MM, Matveeva LN, Kozlyak EI, Rogozhin IS, Solomon ZG & Bezborodov AM (1990) Catabolism of naphthalene and salicylate by Pseudomonas fluorescens. Folia Microbiol. 35: 557–560

    Google Scholar 

  156. Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202

    Google Scholar 

  157. Walter U, Beyer M, Klein J & Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671–676

    Google Scholar 

  158. Wang X, Yu X & Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24: 1086–1089

    Google Scholar 

  159. Warshawsky D, Radike M, Jayasimhulu K & Cody T (1988) Metabolism of benzo[a]pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 152: 540–544

    Google Scholar 

  160. Warshawsky D, Keenan TM, Reilman R, Cody TE & Radike MJ (1990) Conjugation of benzo[a]pyrene metabolites by the freshwater green alga Selenastrum capricornutum. Chem.- Biol. Interact. 73: 93–105

    Google Scholar 

  161. Weissenfels WD, Beyer M & Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479–484

    Google Scholar 

  162. Weissenfels WD, Beyer M, Klein J & Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34: 528–535

    Google Scholar 

  163. West PA, Okpokwasili GC, Brayton PR, Grimes DJ & Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol. 48: 988–993

    Google Scholar 

  164. Wild SR, Berrow ML & Jones KC (1991a) The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollut. 72: 141–157

    Google Scholar 

  165. Wild SR, Obbard JP, Munn CI, Berrow ML & Jones KC (1991b) The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges. Sci. Total Environ. 101: 235–253

    Google Scholar 

  166. Williams PA (1981) Genetics of biodegradation. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 97–107). Academic Press, New York

    Google Scholar 

  167. Wiseman A & Woods LFJ (1979) Benzo[a]pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J. Chem. Technol. Biotechnol. 29: 320–324

    Google Scholar 

  168. Yen KM & Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878

    Google Scholar 

  169. Yen KM & Serdar CM (1988) Genetics of naphthalene catabolism in Pseudomonads. CRC Crit. Rev. Microbiol. 15: 247–267

    Google Scholar 

  170. Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. In: Setlow JK (Ed) Genetic Engineering: Principles and Methods, Vol 13 (pp 183–203). Plenum Press, New York

    Google Scholar 

  171. Zylstra GJ, Chauhan S & Gibson DT (1990) Degradation of chlorinated biphenyls by Escherichia coli containing cloned genes of the Pseudomonas putida F1 toluene catabolic pathway. In: Proceedings of the Sixteenth Annual Hazardous Waste Research Symposium: Remedial Action, Treatment, and Disposal of Hazardous Waste (pp 290–302). (EPA/600/9-90/037)

  172. Zylstra GJ, Cuskey SM & Olsen RH (1991) Construction of plasmids for use in risk assessment research. In: Levin MA, Seidler RJ & Rogul M (Eds) Microbial Ecology: Principles, Methods, and Applications (pp 363–370). McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cerniglia, C.E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368 (1992). https://doi.org/10.1007/BF00129093

Download citation

Key words

  • biodegradation
  • degradation
  • detoxification
  • dioxygenase
  • hydroxylation
  • monooxygenase
  • polycyclic aromatic hydrocarbons
  • ring cleavage