Skip to main content
Log in

Biodegradation of haloalkanes

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Halogenated alkanes constitute a significant group among the organic pollutants of environmental concern. Their industrial and agricultural uses are extensive, but until 1978 they were considered to be non-biodegradable. In recent years, microorganisms were described that could degrade, partially or fully, singly or in consortia, many of the compounds tested. The first step in haloalkane degradation appears to be universal: removal of the halogen atom(s). This is mediated by a group of enzymes, generally known as dehalogenases, acting in most cases either as halidohydrolases or oxygenases. Nevertheless, information is still severely lacking regarding the biochemical pathways involved in these processes, as well as their genetic control.

A recently isolated Pseudomonas strain, named ES-2, was shown to possess a very wide degradative spectrum, and to contain at least one hydrolytic dehalogenase. The utilization by this organism of water-insoluble haloalkanes, such as 1-bromooctane, appears to consist of three phases: extracellular emulsification by a constitutively excreted surface active agent, periplasmic dehalogenation by an inducible dehalogenase, and intracellular degradation of the residual carbon skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–38

    Google Scholar 

  • Alexander M (1985) Biodegradation of organic chemicals. Environ. Sci. Technol. 19: 106–111

    Google Scholar 

  • Baldauf G (1981) Der Fall Grenzach—Beispiel einer Grundwasserverschmutzung mit umweltrelevanten Stoffen. In: Halogenkohlenwasserstoffe in Grundwassern. DVGW-Schriftenreihe. Wasser Nr. 29, Frankfurt.

  • Bouwer EJ & McCarty PL (1983a) Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 4: 1286–1294

    Google Scholar 

  • Bouwer EJ & McCarty PL (1983b) Transformations of halogenated organic compounds under denitrification conditions. Appl. Environ. Microbiol. 45: 1295–1299

    Google Scholar 

  • Brunner W, Staub D & Leisinger T (1980) Bacterial degradation of dichloromethane. Appl. Environ. Microbiol. 40: 950–958

    Google Scholar 

  • Castro CE & Belser NO (1968) Biodehalogenation. Reductive dehalogenation of the biocides ethylene dibromide, 1,2-dibromo-3-chloropropane, and 2,3-dibromobutane in soil. Environ. Sci. Technol. 2: 779–783

    Google Scholar 

  • Chaudhry GR & Chapalamadugu S (1991) Biodegradation of halogenated organic compounds. Microbiol. Rev. 55: 59–79

    Google Scholar 

  • Dalton H & Stirling DI (1982) Co-metabolism. Phil. Trans. R. Soc. Lond. B. 297: 481–496

    Google Scholar 

  • Edwards PR, Campbell I & Milne GS (1982) The impact of chloromethanes on the environment. Part 2: methyl chloride and methylene chloride. (pp 619–622) Chem. Ind. Lond.

  • Ghosal D, You I-S, Chatterjee DK & Chakrabarty AM (1985) Microbial degradation of halogenated compounds. Science 228: 135–142

    Google Scholar 

  • Gschwend PM, MacFarlane JK & Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine microalgae. Science 227: 1033–1035

    Google Scholar 

  • Hardman DJ, Gowland PC & Slaater JH (1986) Plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl. Environ. Microbiol. 51: 44–51

    Google Scholar 

  • f09Hartmans S, Schmuckle A, Cook AM & Leisinger T (1986) Methyl chloride: naturally occurring toxicant and C-1 growth substrate. J. Gen Microbiol. 132: 1139–1142

    Google Scholar 

  • Janssen DB, Scheper A, Dijkhuizen L & Witholt B (1985) Degradation of halogenatedc aliphatic compounds byXanthobacter autotrophicus GJ10. Appl. Enviro. Microbiol. 49: 673–677

    Google Scholar 

  • Janssen DB, Jager D & Witholt B (1987) Degradation of n-haloalkanes and alpha, omega-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70. Appl. Environ. Microbiol. 539: 561–566

    Google Scholar 

  • Jensen HL (1960) Decomposition of chloroacetate by bacteria. Acta. Agric. Scand. 10: 83–103

    Google Scholar 

  • Kawasaki H, Yahara H & Tonomura K (1981) Isolation and characterization of plasmid PU-01 mediating dehalogenation of haloacetate and mercury resistance in Morasella sp. Agric Biol. Chem. 45: 1477–1482

    Google Scholar 

  • Keuning S, Janssen DB & Witholt B (1985) Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J. Bacteriol. 163: 635–639

    Google Scholar 

  • Knackmuss H-J (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Cook AM, Hutter R & Neusch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 189–212). Academic Press, London

    Google Scholar 

  • Kobayashi H & Rittmann BE (1982) Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170A-183A

    Google Scholar 

  • Kohler-Stabu D & Leisinger T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. Bacteriol. 162: 676–681

    Google Scholar 

  • Lal R & Saxena DM (1982) Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiol. Rev. 46: 95–127

    Google Scholar 

  • Leisinger T (1983) Microorganisms and xenobiotic compounds. Experientia 39: 1183–1191

    Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL & Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956

    Google Scholar 

  • Lovelock JE (1975) Natural halocarbons in the air and in the sea. Nature 256: 193–194

    Google Scholar 

  • Morgan P & Watkinson RJ (1989) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol. Rev. 63: 277–300

    Google Scholar 

  • Motosugi K & Soda K (1983) Microbial degradation of synthetic organochlorine compounds. Experientia 39: 1214–1220

    Google Scholar 

  • Motosugi K, Esaki N & Soda K (1982) Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J. Bacteriol. 150: 522–527

    Google Scholar 

  • Murphy GL & Perry JJ (1983) Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria. J. Bacteriol. 156: 1158–1164

    Google Scholar 

  • Oldenhuis R, Vink RLJM, Janssen DB & Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environm. Microbiol. 55: 2819–2826

    Google Scholar 

  • Omori T & Alexander M (1978a) Bacterial and spontaneous dehalogenation of organic compounds. Appl. Environ. Microbiol. 35: 512–516

    Google Scholar 

  • Omori T & Alexander M (1978b) Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl. Environ. Microbiol. 35: 867–871

    Google Scholar 

  • Omori T, Kimura T & Kodama T (1987) Bacterial cometabolic degradation of chlorinated paraffins. Appl. Microbiol. Biotechnol. 25: 553–557

    Google Scholar 

  • Pearson CR (1982) C1 and C2 halocarbons. In: Hutzinger O (Ed) The Handbook of Environmental Chemistry, Vol 3, Part B (pp 69–88). Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Perry JJ (1979) Microbial cooxidations involving hydrocarbons. Microbiol. Rev. 43: 59–72

    Google Scholar 

  • Pignatello JJ (1986) Ethylene dibromide mineralization in soils under aerobic conditions. Appl. Environ. Microbiol. 51: 588–592

    Google Scholar 

  • Rasche ME, Hyman MR & Arp DJ (1990) Biodegradation of halogenated hydrocarbon fumigants by nitrifying bacteria. Appl. Environ. Microbiol. 56: 2568–2571

    Google Scholar 

  • Reineke W & Knackmuss H-J (1988) Microbial degradation of haloaromatics. Annu. Rev. Microbiol. 42: 263–287

    Google Scholar 

  • Rosenberg E (1986) Microbial surfactants. CRC Crit. Revs. Biotechnol. 3: 109–132

    Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C & Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl. Environ. Microbiol. 37: 402–408

    Google Scholar 

  • Sar N & Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strains. Curr. Microbiol. 9: 309–314

    Google Scholar 

  • Sar N & Rosenberg E (1989) Colonial differentiation and hydrophobicity of a Vibrio sp. Curr. Microbiol. 18: 331–334

    Google Scholar 

  • Scholtz R, Scmuckle A, Cook AM & Leisinger T (1987a) Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. strain HA1. J. Gen. Microbiol. 133: 267–273

    Google Scholar 

  • Scholtz R, Leisinger T, Suter F & Cook AM (1987b) Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J. Bacteriol. 169: 5016–5021

    Google Scholar 

  • Scholtz R, Messi F, Leisinger T & Cook AM (1988) Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1. Appl. Environm. Microbiol. 54: 3034–3038

    Google Scholar 

  • Slater JH & Bull AT (1982) Environmental microbiology: biodegradation. Phil. Trans. R. Soc. Lond. B. 297: 575–597

    Google Scholar 

  • Slater H, Lovatt D, Weightman AJ, Senior E & Bull AT (1979) The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalogenase activity. J. Gen. Microbiol. 114: 125–136

    Google Scholar 

  • Stucki G, Galli R, Ebersold H-R & Leisinger T (1981) Dehalogenation of dichloromethane by cell extracts of Hyophomicrobium DM2. Arch. Microbiol. 130: 366–371

    Google Scholar 

  • Stucki G, Krebser U & Leisinger T. (1983) Bacterial growth on 1,2-dichloroethane. Experientia 39: 1271–1273

    Google Scholar 

  • Swindoll CM, Aelion CM & Pfaender FK (1988) Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 54: 212–217

    Google Scholar 

  • Tsang JSH, Sallis PJ, Bull AT & Hardman DJ (1988) A monobromoacetate dehalogenase from Pseudomonas cepacia MBA4. Arch. Microbiol. 150: 441–446

    Google Scholar 

  • Vandenbergh PA & Kunka BS (1988) Metabolism of volatile chlorinated aliphatic hydrocarbons by Pseudomonas fluorescens. Appl. Environ. Microbiol. 54: 2578–2579

    Google Scholar 

  • Veissmann M & Hammer MJ (1985) Water Supply and Pollution Control, 4th edition. Harper & Row, New York.

    Google Scholar 

  • Vogel TM & McCarty PL (1987) Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions. Environ. Sci. Technol. 21: 1208–1213

    Google Scholar 

  • Vogel TM, Criddle CS & McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736

    Google Scholar 

  • Werner P (1989) Experiences in the use of microorganisms in soil and aquifer decontamination. In: Kobus & Kinzelbach (Eds) Contaminant Transport in Groundwater (pp 59–63). Balkema, Rotterdam

    Google Scholar 

  • Yokota T, Fuse H, Omori T & Minoda Y (1986) Microbial dehalogenation of haloalkanes mediated by oxygenase or halohydrolase. Agric. Biol. Chem. 5: 453–460

    Google Scholar 

  • Yokota T, Omori T & Kodam T (1987) Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15–3. J. Bacteriol. 169: 4049–4054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkin, S. Biodegradation of haloalkanes. Biodegradation 3, 299–313 (1992). https://doi.org/10.1007/BF00129090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00129090

Key words

Navigation