Skip to main content
Log in

A quasi-one-dimensional asymptotic theory for non-linear water waves

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Quasi-one-dimensional generalizations of different forms of the one-dimensional Boussinesq equations are derived asymptotically, then, from these quasi-one-dimentional Boussineq equations, a consistent and significant second-order KP equation is derived, according to the Kadomtsev-Petviashvili [1] limiting process, the asymptotic expansions in the derivation of the non-linear Schrödinger-Poisson (NLSP) system of two equations, obtained by Freeman and Davey [2], in the long-water-waves limit are also determined.

Finally, I elucidate the influence of a bottom topography on the Boussinesq and KP equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media.Soviet Phys. Dokl. 15 (1970) 539–541.

    Google Scholar 

  2. N.C. Freeman and A. Davey, On the evolution of packets of long surface waves.Proc. Roy. Soc. Lond. A 344 (1975) 427–433.

    Google Scholar 

  3. E. Infeld, On three-dimensional generalizations of the Boussinesq and Korteweg-de Vries equations.Quart. Appl. Math. 38 (1980) 277–287.

    Google Scholar 

  4. V.E. Zakharov and E.A. Kuznetsov, Multiscale expansion in the theory of systems integrable by the inverse scattering transform.Physica 18D (1986) 455–463.

    Google Scholar 

  5. F. Calogero and W. Eckhaus, Non-linear evolution equations, rescaling, model PDEs and their integrability. I.Inverse Problems 3 (1987) 229–262.

    Google Scholar 

  6. F. Calogero and W. Eckhaus, Non-linear evolution equations, rescaling, model PDEs and their integrability. II.Inverse Problems 4 (1988) 11–33.

    Google Scholar 

  7. F. Calogero and A. Maccari, Equations of non-linear Schrödinger type in 1 + 1 and 2 + 1 dimensions, obtained from integrables PDEs. In: P.C. Sabatier (ed.),Inverse Problems. Academic Press, London (1987) pp. 463–480.

    Google Scholar 

  8. G.B. Whitham,Linear and Non-linear Waves. Wiley-Interscience, New York (1974) 636 pp.

    Google Scholar 

  9. J. Scott Russell, Report on waves.British Association for the Advancement of Sciences, Report 14th Meeting, John Murray, London (1844) 311–390 + 57 plates.

    Google Scholar 

  10. G.B. Airy, Tides and Waves.Encycl. Metropolitana Vol. 5, Section 392 (1845) 241–396.

    Google Scholar 

  11. G.D. Crapper,Introduction to Water Waves. Ellis Horwood Limited Publ., Chichester, England (1984) 224 pp.

    Google Scholar 

  12. Ch. C. Mei,The Applied Dynamics of Ocean Surface Waves. John Wiley and Sons, New York (1983) 740 pp.

    Google Scholar 

  13. G. G. Stokes, On the theory of oscillatory waves.Trans. Cambridge Phil. Soc. 8 (1849) 441–455.

    Google Scholar 

  14. M.J. Boussinesq, Théorie de l'intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire.Acad. des Sciences Paris, Comptes Rendus 72 (1871) 755–759.

    Google Scholar 

  15. M.J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire hoirzontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond.J. Math. Pures et Appliquées (2) 17 (1872) 55–108.

    Google Scholar 

  16. M.J. Boussinesq, Essai sur la théoie des eaux courantes.Mèmoires présentés par divers Savants à l'Académie des Sciences, Institut de France (série 2) 23 (1877) 1–680 (see also 24 (1877) 1–64).

    Google Scholar 

  17. Lord Rayleigh, On waves.Phil. Mag I (1876) 257–279.

    Google Scholar 

  18. J.W. Miles, Solitary waves.Ann. Rev. Fluid Mech. 12 (1980) 11–43.

    Google Scholar 

  19. F. Ursell, The long-wave paradox in the theory of gravity waves.Proc. Cambridge Phil. Soc. 49 (1953) 685–694.

    Google Scholar 

  20. H. Lamb,Hydrodynamics. University Press Cambridge (1932) 6th ed. 738 pp.

    Google Scholar 

  21. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves.Phil. Mag. 39 (1895) 422–443.

    Google Scholar 

  22. N.J. Zabusky and M.D. Kruskal, Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states.Phys. Rev. Lett. 15 (1965) 240–243.

    Google Scholar 

  23. A. C. Newell,Solitons in Mathematics and Physics. SIAM Philadelphia (1985) 244 pp.

  24. R.K. Dodd et al.,Solitons and Non-linear Equations. Academic Press, London (1982) 630 pp.

    Google Scholar 

  25. P.G. Drazin and R.S. Johnson,Solitons: an Introduction. University Press Cambridge (1990) 226 pp.

    Google Scholar 

  26. E. Infeld and G. Rowlands,Non-linear Waves, Solitons and Chaos. University Press, Cambridge (1992) 692 pp.

    Google Scholar 

  27. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimentional self-focusing and one-dimentional self-modulating waves in non-linear media.Soviet Physics-JETP (Engl. Transl.) 65 (1972) 997–1011.

    Google Scholar 

  28. H. Hasimoto and H. Ono, Non-linear Modulation of Gravity Waves.J. Phys. Soc. Japan 3 (1972) 805–811.

    Google Scholar 

  29. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid.J. Appl. Mech. Tech. Phys. (Engl. Transl.) 2 (1968) 190–194.

    Google Scholar 

  30. H.C. Yuen an B.M. Lake, Non-linear dynamics of deep-water gravity waves.Adv. Appl. Mech. 22 (1982) 67–229.

    Google Scholar 

  31. D.J. Benney and G.J. Roskes, Wave instabilities.Studies Appl. Math. 48 (1969) 377–385.

    Google Scholar 

  32. A. Davey and K. Stewartson, On three-dimentional packets of surface waves.Proc. Roy. Soc. Lond. A 338 (1974) 101–110.

    Google Scholar 

  33. V.D. Djordjevic and L.G. Redekopp, On two-dimentional packets of capillary-gravity waves.J. Fluid Mech. 79 (1977) 703–714.

    Google Scholar 

  34. M.J. Ablowitz and H. Segur, On the evolution of packets of water waves.J. Fluid Mech. 92 (1979) 691–715.

    Google Scholar 

  35. A.D.D. Craik,Wave Interaction and Fluid Flows. University Press, Cambridge (1985) 322 pp.

    Google Scholar 

  36. D.H. Peregrine, Long waves on a beach.J. Fluid Mech. 27 (1967) 815–827.

    Google Scholar 

  37. H. Ono, Wave propagation in an inhomogeneous anharmonic lattice.J. Phys. Soc. Japan 32 (1972) 332–336.

    Google Scholar 

  38. R.S. Johnson, On the development of a solitary wave moving over an uneven bottom.Proc. Cambridge Phil. Soc. 73 (1973) 183–203.

    Google Scholar 

  39. R.R. Rosales and G.C. Papanicolaou, Gravity waves in a channel with a rough bottom.Studies in Applied Mathematics 68 (1983) 89–102.

    Google Scholar 

  40. Xue-Nong Chen, Unified Kadomtsev-Petviashvili equation.Physics Fluids A 1 (12) (1989) 2058–2060.

    Google Scholar 

  41. D. Levi, Kadomtsev-Petviashvili equations in the description of water-waves. In: Gu Chachao, Li Yishen and Tu Guizhang (eds),Non-linear Physics. Springer-Verlag, Berlin (1990) pp. 190–204.

    Google Scholar 

  42. E.S. Benilov, On the surface waves in a shallow channel with an uneven bottom.Studies in Applied Mathematics 87 (1992) 1–14.

    Google Scholar 

  43. C.S. Gardner et al., The Korteweg-de Vries equation and generalizations. VI. Methods for exact solution.Comm. Pure Appl. Math. 27 (1974) 97–133.

    Google Scholar 

  44. O.S. Madsen and C.C. Mei, The transformation of a solitary wave over an uneven bottom.J. Fluid Mech. 39 (1969) 781–791.

    Google Scholar 

  45. N.C. Freeman, Soliton Interaction in Two Dimensions.Adv. Appl. Mech. 20 (1980) 1–37.

    Google Scholar 

  46. Y.H. Ichikawa, T. Mitsuhasni and K. Konno, Contribution of higher order terms in the reductive perturbation theory. I. A case of weakly dispersive wave.J. Phys. Soc. Japan 41 (1976) 1382–1386.

    Google Scholar 

  47. Y.H. Ichikawa and S. Watanabe, Solitons, envelope solitons in collisionless plasmas.J. de Physique C6 (1977) 15–26.

    Google Scholar 

  48. N. Sugimoto and T. Kakutani, Note on higher order terms in reductive perturbation theory.J. Phys. Soc. Japan 43 (1977) 1469–1470.

    Google Scholar 

  49. A. Jeffrey and T. Kawahara,Asymptotic Methods in Non-linear Wave Theory. Pitman Adv. Publ. Program, Boston (1982) 255 pp.

    Google Scholar 

  50. D.J. Benney and A.C. Newell, The propagation of non-linear wave envelopes.J. Math. Phys. 46 (1967) 133–139.

    Google Scholar 

  51. R.S. Johnson, On the modulation of water waves on shear flows.Proc. Royal Soc. Lond. A 347 (1976) 537–546.

    Google Scholar 

  52. R.S. Johnson, The Korteweg-de Vries equation and related problems in water wave theory. In: L. Debnath (ed.),Non-linear Waves. University Press, Cambridge (1983) pp. 1–43.

    Google Scholar 

  53. P.L.-F. Liu, S.B. Yoon and J.T. Kirby, Non-linear refraction-diffraction of waves in shallow water.J. Fluid Mech. 153 (1985) 185–201.

    Google Scholar 

  54. R.Kh. Zeytounian,Les Modèles Asymptotiques de la Mécanique des Fluides. Springer-Verlag, Heidelberg, vol. I (1986) 260 pp. and vol. II (1987) 315 pp.

    Google Scholar 

  55. R.Kh. Zeytounian,Asymptotic Modeling of Atmospheric Flows. Springer-Verlag, Heidelberg (1990) 396 pp.

    Google Scholar 

  56. D. David, D. Levi and P. Winternitz, Integrable non-linear equations for water waves in straits of varying depth and width.Studies Appl. Math. 76 (1987) 133–168.

    Google Scholar 

  57. D. David, D. Levi and P. Winternitz, Solitons in shallow seas of variable depth and in marine straits.Studies Appl. Math. 80 (1989) 1–23.

    Google Scholar 

  58. K.B. Dysthe, Note on a modification to the non-linear Schrödinger equation for application to deep water waves.Proc. Roy. Soc. Lond. A 369 (1979) 105–114.

    Google Scholar 

  59. W. Craig, C. Sulem and P.L. Sulem, Non-linear modulation of gravity waves: a rigorous approach.Nonlinearity 5 (1992) 497–522.

    Google Scholar 

  60. M. Shinbrot,Lectures on Fluid Mechanics. Gordon and Breach, Sci. Publ., New York (1973) 222 pp.

    Google Scholar 

  61. L. Debnath, Bifurcation and Non-linear Instability in Applied Mathematics. In: Th.M. Rassias (ed.),Non-linear Analysis. World Scientific Publ., Singapore (1987) pp. 161–285.

    Google Scholar 

  62. T.B. Benjamin, Lectures on non-linear wave motion. In: A.C. Newell (ed.),Non-linear Wave Motion. American Math. Soc. Providence (1974) pp. 3–47.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeytounian, R.K. A quasi-one-dimensional asymptotic theory for non-linear water waves. J Eng Math 28, 261–296 (1994). https://doi.org/10.1007/BF00128748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128748

Keywords

Navigation