Skip to main content
Log in

The general solution and Faxén laws for the temperature fields in and outside an isolated ellipsoid

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The image systems for the disturbance temperature fields in and outside an isolated ellipsoid driven by an n-th order ambient field are introduced and their connection to the ellipsoidal harmonics is derived. More general ambient fields may be handled by superposition of these basic solutions. These result have been used to derive the Faxén relation for the arbitrary n-th order multipole moment. The explicit expressions for the temperature fields and the thermal moment tensors for an ellipsoid in linear and quadratic ambient fields are given to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Batchelor, Transport properties of two-phase materials with random structure, Ann. Rev. Fluid Mech 6 (1974) 227–255.

    Google Scholar 

  2. D.J. Jeffrey and A. Acrivos, The rheological properties of suspensions of rigid particles, AIChE J. 22 (1976) 417–432.

    Google Scholar 

  3. J.C.R. Turner, Two-phase conductivity, Chem. Eng. Sci. 31 (1976) 487–492.

    Google Scholar 

  4. Y.C. Chiew and E.D. Glandt, The effect of structure on the conductivity of a dispersion, J. Colloid Interface Sci. 94 (1983) 90–104.

    Google Scholar 

  5. D.J. Jeffrey, Conduction through a random suspension of spheres, Proc. Roy. Soc. Lond. A 335 (1973) 355–367.

    Google Scholar 

  6. J.J. McCoy and M.J. Beran, On the effective thermal conductivity of a random suspension of spheres, Int. J. Engng. Sci. 14 (1976) 7–18.

    Google Scholar 

  7. R.W. O'Brien, A method for the calculation of the effective transport properties of suspensions of interacting particles, J. Fluid Mech. 91 (1979) 17–39.

    Google Scholar 

  8. G.K. Batchelor and J.T. Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, J. Fluid Mech. 56 (1972) 401–427.

    Google Scholar 

  9. B.U. Felderhof, Hydrodynamic interaction between two spheres, Physica 89A (1977) 373–384.

    Google Scholar 

  10. D.J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech. 139 (1984) 261–290.

    Google Scholar 

  11. S. Kim, Sedimentation of two arbitrary oriented spheriods in a viscous fluid, Int. J. Multiphase Flow 11 (1985) 699–712.

    Google Scholar 

  12. S. Kim, Singularity solutions for ellipsoids in low-Reynolds number flows: with applications to the calculation of hydrodynamic interactions in suspension of ellipsoids, Int. J. Multiphase Flow 12 (1986) 469–491.

    Google Scholar 

  13. M.J. Gluckman, R. Pfeffer and S. Weinbaum, A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids, J. Fluid Mech. 50 (1971) 705–740.

    Google Scholar 

  14. W.-H. Liao and D.A. Krueger, Multipole expansion calculation of slow viscous flow about spheroids of different sizes, J. Fluid Mech. 96 (1980) 223–241.

    Google Scholar 

  15. S. Kim and R.T. Mifflin, The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids 28 (1985) 2033–2045.

    Google Scholar 

  16. M. Smoluchoswki, On the mutual action of spheres which move in a viscous liquid, Bull. Acad. Sci. Cracvie 1A (1911) 28–39.

    Google Scholar 

  17. H. Faxén, Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen, ebenen Wänden eingeschloβen ist. (The resistance against the movement of a rigid sphere in a viscous fluid enclosed between two parallel planes), Arkiv. Mat. Astron. Fys. 18 (1924) 3.

    Google Scholar 

  18. H. Brenner, The Stokes resistance of an arbitrary particle, IV. Arbitrary fields of flow, Chem. Engng. Sci. 19 (1964) 703–727.

    Google Scholar 

  19. H. Brenner and S. Haber, Symbolic operator solutions of Laplace's and Stoke's equations, Part 1, Chem. Engng. Commun. 27 (1984) 283–295.

    Google Scholar 

  20. S. Haber and H. Brenner, Symbolic operator solutions of Laplace's and Stokes equations. Part II. Stokes flow past a rigid sphere, Chem. Engng. Commun. 27 (1984) 297–311.

    Google Scholar 

  21. G. Hetsroni and G. Haber, Flow in and around a droplet or bubble submerged in an unbounded arbitrary velocity field, Rheol. Acta 9 (1980) 488–496.

    Google Scholar 

  22. J.M. Rallison, Note on the Faxén relations for a particle in Stokes flow, J. Fluid Mech. 88 (1978) 529–533.

    Google Scholar 

  23. H. Brenner and S. Haber, Symbolic operator representation of generalized Faxén relation, Physico Chemical Hydrodynamics 4 (1983) 271–278.

    Google Scholar 

  24. E.J. Hinch, Note on the symmetries of certain material tensors for a particle in Stokes flow, J. Fluid Mech. (1972) 423–425.

  25. S. Kim, A note on Faxén laws for nonspherical particles, Int. J. Multiphase Flow 11 (1985) 713–719.

    Google Scholar 

  26. S. Kim and S.-Y. Lu, On the functional similarity between Faxén relations and singularity solutions for fluid/fluid, fluid/solid and solid/solid dispersions, submitted to Int. J. Multiphase Flow.

  27. E.W. Hobson, Spherical and Ellipsoidal Harmonics, Second reprint, Chelsea, New York (1965).

  28. T. Miloh, The ultimate image singularities for external ellipsoidal harmonics, SIAM J. Appl. Math. 26 (1974) 334–344.

    Google Scholar 

  29. S. Kim and P.V. Arunachalam, The general solution for ellipsoids in low-Reynolds-number flow, J. Fluid Mech. 178 (1987) 535–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S.Y., Kim, S. The general solution and Faxén laws for the temperature fields in and outside an isolated ellipsoid. J Eng Math 21, 179–200 (1987). https://doi.org/10.1007/BF00127463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127463

Keywords

Navigation