Skip to main content

Advertisement

Log in

Myocardial blood flow in dilated cardiomyopathy

  • Clinical Reviews
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial blood flow (MBF) impairment has been documented in advanced idiopathic dilated cardiomyopathy (IDC) where different factors may secondarily affect myocardial perfusion. In failing hearts, explanted from patients with end-stage IDC, MBF is markedly depressed; however, a preferential flow to the subendocardium is preserved; furthermore, the severity of perfusion impairment does not correlate with the extent of fibrosis quantitatively determined by biochemical assessment or evaluated by histologic criteria. Thus, other mechanisms, besides myocardial hemodynamic and structural derangement, seem to operate in determining resting MBF impairment in advanced IDC. Abnormalities in the absolute levels of myocardial perfusion and in regional MBF distribution can also be detected in an early phase of IDC preceeding the development of severe ventricular dysfunction and the clinical appearance of overt heart failure. In patients with subclinical IDC, regional and global myocardial perfusion, as evaluated by positron emission tomography, is frequently impaired both at rest and in response to different vasodilating stimuli such as pacing tachycardia, dipyridamole or adenosine infusion. The presence of an additional coronary resistance, at the microcirculatory level, not sensitive to adenosine, is a possible mechanism causing depressed MBF in subclinical IDC. Progression of the discase is associated with a further impairment in myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss MB, Ellis K, Sciacca RR, Johnson LL, Schmidt DH, Cannon PJ. Myocardial blood flow in congestive and hypertrophic cardiomyopathy. Relationship to peak wall stress and mean velocity of circumferential fiber shortening. Circulation. 1976;54:484–493.

    Google Scholar 

  2. Pasternac A, Noble J, Streulens Y, Elie R, Henschke C, Bourassa MG. Pathophysiology of chest pain in patients with cardiomyopathies and normal coronary arteries. Circulation. 1982;65:778–789.

    Google Scholar 

  3. Opherk D, Schwartz F, Mall G, Manthey J, Baller D, Kubler W. Coronary dilatory capacity in idiopathic dilated cardiomyopathy: analysis of 16 patients. Am J Cardiol 1983;51: 1657–1662.

    Google Scholar 

  4. Neglia D, Levorato D, Berti S, Marzilli M, Pelosi G, Marcassa C, Bongiorni MG, L'Abbate A, Contini C. Diagnósi e caratterizzazione funzionale di iniziale danno miocardico in pazienti con aritmie cardiache. Cardiologia. 1987;32:713–719.

    Google Scholar 

  5. Nitenberg A, Foult J, Blanchet F, Zouioueche S. Multifactorial determinats of reduced coronary flow reserve after dipyridamole in dilated cardiomyopathy. Am J Cardiol. 1985;55:748–754.

    Google Scholar 

  6. Cannon RO, Cunnion RE, Parrillo JE, Palmeri ST, Tucker EE, Schenke WH, Epstein SE. Dynamic limitation of coronary vasodilatory reserve in patients with dilated cardiomyopathy and chest pain. J Am Coll Cardiol 1987;10:1190–1200.

    Google Scholar 

  7. Treasure CB, Vita JA, Cox DA, Fish RD, Gordon JB, Mudge GH, Colucci WS, St John Sutton MG, Selwyn AP, Alexander RW, Ganz P. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 1990;81:772–779.

    Google Scholar 

  8. Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamanaka T, Kakoi H, Takabatake Y. Coronary flow reserve in patients with dilated cardiomypathy. Am Heart J 1993; 125:93–98.

    Google Scholar 

  9. Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamaguchi H, Kakoi H, Takabatake Y. Vasodilatory capacity of coronary resistance vessels in dilated cardiomyopathy. Am Heart J 1994;127:376–381.

    Google Scholar 

  10. Cannon PJ, Dell RB, Dwyer EMJr. Regional myocardial perfusion rates in patients with coronary artery disease. J Clin Invest 1972;51:978–994.

    Google Scholar 

  11. Klocke FJ, Bunnell IL, Greene DG, Wittenberg SM, Visco JP. Average coronary blood flow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 1974;50:547–559.

    Google Scholar 

  12. Cannon PJ, Schmidt DH, Weiss MB, Fowler DL, Sciacca RR, Ellis K, Casarella WJ. The relationship between regional myocardial perfusion at rest and arteriographic lesions in patients with coronary atherosclerosis. J Clin Invest 1975;56:1442–1454.

    Google Scholar 

  13. Cannon PJ, Weiss MB, Sciacca RR. Myocardial blood flow in coronary artery disease: studies at rest and during stress with inert gas washout techniques. Progr Cardiovasc Dis 1977;20:95–119.

    Google Scholar 

  14. Maseri A, L'Abbate A, Michelassi C, Pesola A, Pisani P, Marzilli M, DeNes M, Mancini P. Possibilities, limitations and technique for the study of regional myocardial perfusion in man by xenon-133. Cardiovasc Res 1977;11:277–290.

    Google Scholar 

  15. Arani DT, Greene DG, Bunnell IL, Smith GL, Klocke FJ. Reductions in coronary flow under resting conditions in collateral-dependent myocardium of patients with complete occlusion of the left anterior descending coronary artery. J Am Coll Cardiol 1984;3:668–674.

    Google Scholar 

  16. Bergmann SR, Fox KAA, Rand AL, McElvany KD, Welch MJ, Markham MJ, Sobel BE. Quantification of regional myocardial blood flow with H2 15O. Circulation 1984;70:724–733.

    Google Scholar 

  17. Bellina CR, Parodi O, Camici P, Salvadori PA, Taddei L, Fusani L, Guzzardi R, Klassen GA, L'Abbate A, Donato L. Simultaneous in vitro and in vivo validation of 13N-Ammonia for the assessment of regional myocardial blood flow. J Nucl Med 1990;31:1335–1343.

    Google Scholar 

  18. Wilson RA, Shea MJ, DeLandsheere CM, Turton D, Brady F, Deanfield JE, Selwyn AP. Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography. Circulation 1984;70:717–723.

    Google Scholar 

  19. Wisenberg G, Schelbert HR, Hoffman EJ, Phelps ME, Robinson GD, Selin CE, Child J, Skorton D, Kuhl DE. In vivo quantitation of regional myocardial blood flow by positronemission computed tomography. Circulation 1981;63:1248–1258.

    Google Scholar 

  20. Selwyn AP, Shea MJ, Foale R, Deanfield JE, Wilson R, DeLandsheere CM, Turton DL, Brady F, Pike VW, Brookes DI. Regional myocardial and organ blood flow after myocardial infarction: application of the microsphere principle in man. Circulation 1986;73:433–443.

    Google Scholar 

  21. Parodi O, Schelbert HR, Schwaiger M, Hansen H, Selin C, Hoffman EJ. Cardiac emission computed tomography: underestimation of regional tracer concentrations due to wall motion abnormalities. J Comput Assist Tomogr 1984;8:1083–1092.

    Google Scholar 

  22. Klocke FJ, Koberstein RC, Pittman DE, Bunnell IL, Greene DG, Rosing DR. Effects of heterogeneous myocardial perfusion on coronary venous H2 desaturation curves and calculations of coronary flow. J Clin Invest 1968;47:2711–2724.

    Google Scholar 

  23. Donato L, Bartolomei G, Giordani R. Evaluation of myocardial blood perfusion in man with radioactive potassium or rubidium and precordial counting. Circulation 1964;29:195–203.

    Google Scholar 

  24. Cowan C, Duran PVM, Corsini G, Goldschlager N, Bing RJ. The effects of nitroglycerin on myocardial blood flow in man, measured by coincidence counting and bolus injection of 84rubidium. Am J Cardiol 1969;24:154–160.

    Google Scholar 

  25. Chen PH, Nichols AB, Weiss MB, Sciacca RR, Walter PD, Cannon PL. Left ventricular myocardial blood flow in multivessel coronary artery disease. Circulation 1982;66:537–547.

    Google Scholar 

  26. Parodi O, DeMaria R, Oltrona L, Testa R, Sambuceti G, Roghi A, Merli M, Berlinghieri L, Accinni R, Spinelli F, Pellegrini A, Baroldi G. Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation 1993; 88:509–522.

    Google Scholar 

  27. DeMaria R, Parodi O, Baroldi G, Sambuceti G, Testa R, Oltrona L, Grassi M, Parolini M, Barberis M, Sara R, DeVita C, Pellegrini A. Morphological bases for thallium-201 uptake in cardiac imaging and correlates with myocardial blood flow distribution. Eur Heart J 1996;17:951–961.

    Google Scholar 

  28. Heymann MA, Payne PD, Hoffman JIE, Rudolph AM. Blood flow measurements with radionuclide labeled particles. Progr Cardiovasc Dis 1977;20:55–79.

    Google Scholar 

  29. Accinni R, Belingheri L, Giglioni A, Micelli G, Quaranta M, Wei J, Lucarelli C. Quantitation of collagen/total protein ratio in biological samples by isocractic high performance liquid chromatography 4-hydroxyproline assay. Giorn It Chim Clin 1992;17:27–33.

    Google Scholar 

  30. Salisbury PF, Cross CE, Rieben PA. Acute ischemia of inner layers of ventricular wall. Am Heart J 1963;66:650–656.

    Google Scholar 

  31. Kjekshus JK, Maroko PR, Sobel BE. Distribution of myocardial injury and its relation to epicardial ST segment changes following acute coronary artery occlusion in the dog. Cardiovasc Res 1972;6:490–499.

    Google Scholar 

  32. Cutarelli R, Levy MN. Intraventricular pressure and the distribution of coronary blood flow. Circ Res 1963;12:322–327.

    Google Scholar 

  33. Moir TW, Debre DW. Effect of left ventricular hypertension, ischemia and vasoactive drugs on the myocardial distribution of coronary flow. Circ Res 1967;21:65–74.

    Google Scholar 

  34. Griggs DM, Nakamura Y. Effect of coronary constrictions on myocardial distribution of iodo-antipyrine *131I. Am J Physiol 1968;215:1082–1088.

    Google Scholar 

  35. Becker LC, Fortuin NJ, Pitt B. Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res 1971;28:263–269.

    Google Scholar 

  36. Kjekshus JK. Mechanism for flow distribution in normal and ischemic myocardium during increased ventricular preload in the dog. Circ Res 1973;33:489–499.

    Google Scholar 

  37. Henry PD, Eckberg D, Gault JH, Ross J. Depressed inotropic state and reduced myocardial oxygen consumption in the human heart. Am J Cardiol 1973;31:300–306.

    Google Scholar 

  38. Parodi O, Sambuceti G, Roghi A, Testa R, Inglese E, Pirelli S, Spinelli F, Campolo L, L'Abbate A. Residual coronary reserve in spite of decreased resting blood flow in patients with critical coronary lesions: a study by 99M-Tc-microsphere myocardial scintigraphy. Circulation 1993;87:330–344.

    Google Scholar 

  39. Cobb FR, Bache RJ, Greenfiled JC. Regional myocardial blood flow in awake dogs. J Clin Invest 1974;53:1618–1625.

    Google Scholar 

  40. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, Salvadori P, Michelassi C, Lunardi M, Pelosi G, Marzilli M, L'Abbate A. Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 1995;92:796–804.

    Google Scholar 

  41. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 1989;256:H383-H390.

    Google Scholar 

  42. Strain JE, Grose RM, Stephen MF, Fisher JD. Results of endomyocardial biopsy in patients with spontaneous ventricular tachycardia but without apparent structural heart disease. Circulation. 1983;68:1171–1181.

    Google Scholar 

  43. Keren A, Popp RL. Assignment of patients into the classification of cardiomyopathies. Circulation. 1992;86:1622–1633.

    Google Scholar 

  44. Abelmann WH, Lorell BH. The challenge of cardiomyopathy. J Am Coll Cardiol 1989;13:1219–1239.

    Google Scholar 

  45. Vaghaiwalla Mody F, Brunken RC, Stevenson LW, Nienaber CA, Phelps ME, Schelbert HR. Differentiating cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy utilizing positron emission tomography. J Am Coll Cardiol. 1991;17:373–383.

    Google Scholar 

  46. Wallis DE, O'Connel JB, Henkin RE, Costanzo-Nordin MR, Scanlon PJ. Segmental wall motion abnormalities in dilated cardiomyopathy: a common finding and good prognostic sign. J Am Coll Cardiol 1984;4:674–679.

    Google Scholar 

  47. Yamaguchi S, Tsuiki K, Hayasaka M, Yasui S. Segmental wall motion abnormalities in dilated cardiomyopathy: hemodynamic characteristics and comparison with thallium-201 myocardial scintigraphy. Am Heart J 1987;113:1123–1128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parodi, O., Neglia, D., de Maria, R. et al. Myocardial blood flow in dilated cardiomyopathy. Heart Failure Rev 1, 261–269 (1997). https://doi.org/10.1007/BF00127407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127407

Key Words

Navigation