Skip to main content
Log in

Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment

  • Research Articles
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Under conditions where plasmid-carriage is deleterious to the cell, evolutionary changes may be expected which result in an attenuation of the deleterious effect of the plasmid. During long-term growth in glucose-limited continuous culture, initiated with a single clone of Escherichia coli containing a derivative of the plasmid pBR322, a structural change arose in the plasmid and predominated in the plasmid-containing sector of the population. This variant possessed a 2.25 kb deletion encompassing the tetracycline resistance operon as well as a region of about 1.5 kb upstream from this operon. Competition experiments involving strains carrying the plasmid with the spontancous deletion, and strains carrying plasmids with artificially constructed deletions, revealed that deletion of this region of the plasmid, involving loss of tetracycline resistance, resulted in an increment in fitness of between 10 and 20%. From the magnitude of the growth advantage, we conclude that the attenuation of the deleterious effect of the plasmid was mainly due to a reduction in the plasmid mediated interference in the metabolism of the cell caused by a deletion of the tetracycline resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. P. & Roth, J. R., 1977. Tandem genetic duplications in phage and bacteria. Ann. Rev. Microbiol. 31: 473–505.

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K., 1989. Current Protocols in Molecular Biology, Vol. 1. Greene publishing Associates and Wiley-Interscience.

  • Boe, L., Gerdes, K. & Molin, S., 1987. Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance. J. Bacteriol. 169: 4646–4650.

    Google Scholar 

  • Bouma, J. E. & Lenski, R. E., 1988. Evolution of a bacteria/plasmid association. Nature 335: 351–352.

    Google Scholar 

  • Boyko, W. L. & Ganschow, R. E., 1982. Rapid identification of Escherichia coli transformed by pBR322 carrying inserts at the PstI site. Anal. Biochem. 122: 885–888.

    Google Scholar 

  • Chao, L. & Bremer, H., 1986a. Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol. Gen. Genet. 203: 143–149.

    Google Scholar 

  • Chao, L. & Bremer, H., 1986b. Effect of relA function on the replication of plasmid pBR322 in Escherichia coli. Gen. Genet. 203: 150–153.

    Google Scholar 

  • Cheah, U. E., Weigand, W. A. & Stark, B. C., 1987. Effects of recombinant plasmid size on cellular processes in Escherichia coli. Plasmid 18: 127–134.

    Google Scholar 

  • Chiang, C. S. & Bremer, H., 1988. Stability of pBR322-derived plasmids. Plasmid 20: 207–220.

    Google Scholar 

  • Eckert, B. & Beck, C. F., 1989. Overproduction of transposon Tn10-encoded resistance protein results in cell death and loss of membrane potential. J. Bacteriol. 171: 3557–3559.

    Google Scholar 

  • Edlund, T. & Normark, S., 1981. Recombination between short DNA homologies causes tandem duplication. Natur 292: 269–271.

    Google Scholar 

  • Engberg, B. & Nordstrom, K., 1975. Replication of R-factor R1 in Escherichia coli K12 at different growth rates. J. Bacteriol. 123: 179–186.

    Google Scholar 

  • Godwin, D. & Slater, J. H., 1979. The influence of the growth environment on the stability of a drug resistance plasmid in Escherichia coli K12. J. Gen. Microbiol. 111: 201–210.

    Google Scholar 

  • Heffron, F., Kostriken, R., Morita, C. & Parker, R., 1981. Tn3 encodes a site-specific recombination system: identification of essential sequences, genes, and the actual site of recombination. Cold Spring Harbor Symp. Quant. Biol. 45: 259–268.

    Google Scholar 

  • Helling, R. B., Kinney, T. & Adams, J., 1981. The maintenance of plasmid-containing organisms in populations of Escherichia coli. J. Gen. Microbiol. 123: 129–141.

    Google Scholar 

  • Helling, R. B., Vargas, C. N. & Adams, J., 1987. Evolution of Escherichia coli during growth in a constant environment. Genetics 116: 349–358.

    Google Scholar 

  • Horiuchi, T., Horiuchi, S. & Novick, A., 1963. The genetic basis of hypersynthesis of β-galactosidase. Genetics 48: 157–169.

    Google Scholar 

  • Hwu, H. R., Roberts, J. W., Davidson, E. H. & Britten, R. J., 1986. Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc. Nat. Acad. Sci. USA 83: 3875–3879.

    Google Scholar 

  • Inselburg, J., 1978. ColE1 plasmid mutants affecting growth of an Escherichia coli recB recC sbcB mutant. J. Bacteriol. 133: 433–436.

    Google Scholar 

  • Jessop, A. P. & Clugston, C., 1985. Amplification of the ArgF region in strain HfrP4X of E. coli K12. Mol. Gen. Genet. 201: 347–350.

    Google Scholar 

  • Jones, I. M., Primrose, S. B., Robinson, A. & Ellwood, D. C., 1980. Maintenance of some ColE1-type plasmids in continuous culture. Mol. Gen. Genet. 180: 579–584.

    Google Scholar 

  • Kubitschek, H. E., 1970. Introduction to Research with Continuous Cultures. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Lee, S. W. & Edlin, G., 1985. Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing E. coli. Gene 39: 173–180.

    Google Scholar 

  • Lee, S. C., Gerding, D. N. & Cleary, P. P., 1984. Plasmid macro-evolution in a nosocomial environment; demonstration of a persistent molecular polymorphism and construction of a cladistic phylogeny on the basis of restriction data. Mol. Gen. Genet. 194: 173–178.

    Google Scholar 

  • Levin, B. R. & Lenski, R. E., 1983. Coevolution in bacteria and their viruses and plasmids, pp. 99–127. In. Coevolution. Edited by D. J. Futuyma and M. Slatkin. Sinauer Assoc., Sunderland, Mass.

    Google Scholar 

  • Lundquist, P. D. & Levin, B. R., 1986. Transitory depression and the maintenance of conjugative plasmids. Genetics 113: 483–497.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F. & Sambrook, J., 1982. Molecular Cloning-A Laboratory Manual. Cold Spring Harbor Laboratories. Cold Spring Harbor, New York.

    Google Scholar 

  • Melling, J., Ellwood, D. C. & Robinson, A., 1977. Survival of R-factor carrying Escherichia coli in mixed cultures in the chemostat. FEMS Microbiol. Lett. 2: 87–89.

    Google Scholar 

  • Miller, R. D., Dykhuizen, D. E., Green, L. & Hartl, D. L., 1984. Specific deletion occurring in the directed evolution of 6-phosphogluconate dehydrogenase in Escherichia coli. Genetics 108: 765–772.

    Google Scholar 

  • Modi, R. I. & Adams, J., 1991. Coevolution in bacterial-plasmid populations. Evolution 45: 656–667.

    Google Scholar 

  • Nguyen, T. N. M., Phan, Q. G., Duong, L. P., Bertrand, K. P. & Lenski, R. E., 1989. Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of E. coli K12. Mol. Biol. Evol. 6: 213–225.

    Google Scholar 

  • Noack, D., Roth, M., Guether, R., Muller, G., Undisz, K., Hoffmeier, C. & Gaspar, S., 1981. Maintenance and genetic stability of vector plasmids pBR322 and pBR325 in Escherichia coli K12 strains grown in a chemostat. Mol. Gen. Genet. 184: 121–124.

    Google Scholar 

  • Peden, K. W. C., 1983. Revised sequence of the tetracycline-resistance gene of pBR322. Gene 22: 277–280.

    Google Scholar 

  • Rigby, P. W. J., Burleigh, B. D. & Hartley, B. S., 1974. Gene duplication in experimental enzyme evolution. Nature 251: 200–204.

    Google Scholar 

  • Roth, J. R. & Schmid, M., 1981. Arrangement and rearrangement of the bacterial genome. Stadler symp. 13: 53–70.

    Google Scholar 

  • Roth, M., Muller, G. & Noack, D., 1980. Loss of the multi-copy resistance plasmid pBR325 from Escherichia coli CY2354 pBR325 during continuous cultivation, pp. 143–146. In. Fourth International Symposium on Antibiotic Resistance. Edited by S. Mitsuhasi, L. Rosival and V. Krcmery. Aviceneum Prague and Springer-Verlag West, Berlin.

    Google Scholar 

  • Sonti, R. V. & Roth, J. R., 1989. Role of gene duplication in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123: 19–28.

    Google Scholar 

  • Tait, R. C. & Boyer, H. W., 1978. On the nature of tetracycline resistance controlled by the plasmid pSC101. Cell 13: 73–81.

    Google Scholar 

  • Taxis Du Poet, P., Arcand, Y., Bernier, R. Jr., Barbotin, J.-N. & Thomas, D., 1987. Plasmid stability in immobilized and free recombinant E. coli JM105(pKK223–200): Importance of oxygen diffusion, growth rate, and plasmid copy number. Appl. Environ. Microbiol. 53: 1548–1555.

    Google Scholar 

  • Tlsty, D. T., Albertini, A. M. & Miller, J. H., 1984. Gene amplification in the lac region of E. coli. Cell 37: 217–224.

    Google Scholar 

  • Warnes, A. & Stephenson, J. R., 1986. The insertion of large pieces of foreign genetic material reduces the stability of bacterial plasmids. Plasmid 16: 116–123.

    Google Scholar 

  • Weinberger, M. & Helmstetter, C. E., 1979. Chromosome replication and cell division in plasmid-containing E. coli B/R. J. Bacteriology 137: 1151–1157.

    Google Scholar 

  • Wouters, J. T. M., Driehuis, F. L., Polaczek, P. J., van Oppenraay, M.-L.H.A. & van Andel, J. G., 1980. Persistence of the pBR322 plasmid in Escherichia coli K12 grown in chemostat cultures. Antonie van Leeuwenhoek. Jour. Microbiol. Serol. 45: 353–362.

    Google Scholar 

  • Wouters, J. T. M. & van Andel, J. G., 1979. R-plasmid persistance in Escherichia coli grown in chemostat cultures. Antonie van Leeuwenhoek. Jour. Microbiol. Serol. 45: 317–318.

    Google Scholar 

  • Zund, P. & Lebek, G., 1980. Generation time-prolonging R plasmids: Correlation between increases in the generation time of Escherichia coli caused by R-plasmids and their molecular size. Plasmid 3: 65–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, R.I., Wilke, C.M., Rosenzweig, R.F. et al. Plasmid macro-evolution: selection of deletions during adaptation in a nutrient-limited environment. Genetica 84, 195–202 (1991). https://doi.org/10.1007/BF00127247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127247

Key words

Navigation