Summary
Two new continuum solvation models have been presented recently, and in this paper they are explained and reviewed in detail with further examples. Solvation Model 2 (AM1-SM2) is based on the Austin Model 1 and Solvation Model 3 (PM3-SM3) on the Parameterized Model 3 semiempirical Hamiltonian. In addition to the incorporation of phosphorus parameters, both of these new models address specific deficiencies in the original Solvation Model 1 (AM1-SM1), viz., (1) more accurate account is taken of the hydrophobic effect of hydrocarbons, (2) assignment of heavy-atom surface tensions is based on the presence or absence of bonded hydrogen atoms, and (3) the treatment of specific hydration-shell water molecules is more consistent. The new models offer considerably improved performance compared to AM1-SM1 for neutral molecules and essentially equivalent performance for ions. The solute charges within the Parameterized Model 3 Hamiltonian limit the utility of PM3-SM3 for compounds containing nitrogen and possibly phosphorus. For other systems both AM1-SM2 and PM3-SM3 give realistic results, but AM1-SM2 in general outperforms PM3-SM3. Key features of the models are discussed with respect to alternative approaches.
Similar content being viewed by others
References
Cramer, C.J. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 8305, 9901 (E).
Cramer, C.J. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 8552, 9901 (E).
Cramer, C.J. and Truhlar, D.G., Science, 256 (1992) 213.
Cramer, C.J. and Truhlar, D.G., J. Comput. Chem., in press.
Pople, J.A. and Segal, G.A., J. Chem. Phys., 43 (1965) S129.
Pople, J.A. and Beveridge, D.L., Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.
Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Amer. Chem. Soc., 107 (1985) 3902.
Dewar, M.J.S. and Zoebisch, E.G., J. Mol. Struct. (Theochem), 180 (1988) 1.
Dewar, M.J.S. and Jie, C., J. Mol. Struct. (Theochem), 187 (1989) 1.
Dewar, M.J.S. and Yuan, Y.C., Inorg. Chem., 29 (1990) 3881.
Stewart, J.J.P., J. Comput. Chem., 10 (1989) 209; 221.
Stewart, J.J.P., J. Comput.-Aided Mol. Des., 4 (1990) 1.
Born, M., Physik, Z., 1 (1920) 45.
Rashin, A.A. and Honig, B., J. Phys. Chem., 89 (1985) 5588.
Hoijtink, G.J., de Boer, E., van der Meij, P.H. and Weijland, W.P., Recl. Trav. Chim. Pays-Bas, 75 (1956) 487.
Peradejordi, F., Cah. Phys., 17 (1963) 393.
Jano, I., Compt. Rend. Acad. Sci. (Paris), 261 (1965) 103.
Fischer-Hjalmars, I., Hendriksson-Enflo, A. and Hermann, C., Chem. Phys., 24 (1977) 167.
Tapia, O., In Daudel, R., Pullman, A., Salem, L. and Veillard, A. (Eds.) Quantum Theory of Chemical Reactions, Vol. II, Reidel, Dordrecht, 1980, p. 25.
Costanciel, R. and Contreras, R., Theor. Chim. Acta, 65 (1984) 1.
Kozaki, T., Morihasi, M. and Kikuchi, O., J. Amer. Chem. Soc., 111 (1989) 1547.
Tucker, S.C. and Truhlar, D.G., Chem. Phys. Lett., 157 (1989) 164.
Still, W.C., Tempczak, A., Hawley, R.C. and Hendrickson, T., J. Amer. Chem. Soc., 112 (1990) 6127.
Onsager, L., J. Amer. Chem. Soc., 58 (1936) 1486.
See, e.g., Rivail, J.L., In Bertrán, J. and Csizmadia, I.G. (Eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p. 219; Rinaldi, D., Ruiz-Lopez, M.F. and Rivail, J.L., J. Chem. Phys., 78 (1983) 834; Rivail, J.L., Terryn, B., Rinaldi, D. and Ruiz-Lopez, M.F., J. Mol. Struct. (Theochem), 120 (1985) 387.
Mulliken, R.S., J. Chem. Phys., 23 (1955) 1833.
Newton, M.D., J. Phys. Chem., 79 (1975) 2795.
Tapia, O. and Goscinski, O., Mol. Phys., 29 (1975) 1653.
McCreery, J., Christofferson, R.E. and Hall, G.C., J. Amer. Chem. Soc., 98 (1976) 7191.
Rivail, J.-L. and Rinaldi, D., Chem. Phys., 18 (1976) 233.
Warshel, A. and Levitt, M., J. Mol. Biol., 103 (1976) 227.
Klopman, G. and Andreozzi, P., Theor. Chim. Acta, 55 (1980) 77.
Miertius, S., Scrocco, E. and Tomasi, J., J. Chem. Phys., 55 (1981) 117.
Bonaccorsi, R., Cimaraglia, R. and Tomasi, J., J. Comput. Chem., 4 (1983) 567.
Contreras, R. and Gomez-Jeria, J.S., J. Phys. Chem., 88 (1984) 1905.
Mikkelson, K.V., Dalgaard, E. and Swanstrøm, P., J. Phys. Chem., 91 (1987) 3081.
Bash, P.A., Field, M.J. and Karplus, M., J. Amer. Chem. Soc., 109 (1987) 8092.
Karlstrøm, G., J. Phys. Chem., 92 (1988) 1315; 93 (1989) 4952.
Hoshi, H., Sakurai, M., Inouye, Y. and Chûjô, R., J. Mol. Struct. (Theochem), 180 (1988) 267.
Bertrán, J., In Bertràn, J. and Czismadia, I.G. (Eds.) New Theoretical Concepts for Understanding Organic Reactions, Kluwer, Dordrecht, 1989, p. 231.
Stienke, T., Hänsele, E. and Clark, T., J. Amer. Chem. Soc., 111 (1989) 9107.
Duijnen van, P.T. and Rullmann, J.A.C., Int. J. Quantum Chem., 38 (1990) 181.
Karelson, M.M., Katritzky, A.R., Szafran, M. and Zerner, M.C., J. Org. Chem., 54 (1989) 6030.
Wong, M.W., Wiberg, K.B. and Frisch, M., J. Chem. Phys., 95 (1991) 8991.
Wong, M.W., Wiberg, K.B. and Frisch, M.J., J. Amer. Chem. Soc., 114 (1992) 523.
Hermann, R.B., J. Phys. Chem., 76 (1972) 2754.
Harris, M.J., Higuchi, T. and Rytting, J.H., J. Phys. Chem., 77 (1973) 2694.
Reynolds, J.A., Gilbert, D.B. and Tanford, C., Proc. Natl. Acad. Sci. U.S.A., 71 (1974) 2925.
Chothia, C., Nature, 248 (1974) 338.
Amidon, G.L., Yalkowski, S.H., Anik, S.T. and Valvani, S.C., J. Phys. Chem., 79 (1975) 2239.
Warshel, A., J. Phys. Chem., 83 (1979) 1640.
Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H., Science, 229 (1985) 834.
Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.
Ooi, T., Oobatake, M., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.
Lee, C.Y., McCammon, J.A. and Rossky, P.J., J. Chem. Phys., 80 (1984) 4448.
Friedman, H.L. and Krishnan, C.V., J. Solution Chem., 2 (1973) 119.
Hine, J. and Mookerjee, P.K., J. Org. Chem., 40 (1975) 287.
Cabani, S., Gianni, P., Mollica, V. and Lepori, L., J. Solution Chem., 10 (1981) 563.
Ben-Naim, A. and Marcus, Y., J. Chem. Phys., 81 (1984) 2016.
Pearson, R.G., J. Amer. Chem. Soc., 108 (1986) 6109.
Armstrong, D.R., Perkins, P.G. and Stewart, J.J.P., J. Chem. Soc., Dalton Trans., 1973 (1973) 838.
Jorgensen, W.L., Gao, J. and Ravimohan, C., J. Phys. Chem., 89 (1985) 3470.
Dewar, M.J.S., Healy, E.F., Holder, A.J. and Yan, Y.-C., J. Comp. Chem., 11 (1990) 541.
Seeger, D.M., Korzeniewski, C. and Kowalchyk, W., J. Phys. Chem., 95 (1991) 6871.
Juranic, I., Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1990) 877.
Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1991) 531.
Rzepa, H.S. and Yi, M., J. Chem. Soc., Perkin Trans., 2 (1990) 943.
Gulera, G., Lluch, J.M., Oliva, A. and Bertrán, J., J. Mol. Struct. (Theochem), 163 (1988) 101.
Dannenberg, J.J., J. Phys. Chem., 92 (1988) 6869.
Khalil, M., Woods, R.J., Weaver, D.F. and Smith, V.H. Jr., J. Comput. Chem., 12 (1991) 584.
Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L. and Nuttall, R.C., J. Phys. Chem. Ref. Data, 11 (1982) Suppl. 2.
Wolfenden, R. and Williams, R., J. Amer. Chem. Soc., 105 (1983) 1028.
Pauling, I., The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, 1960.
Cramer, C.J. and Truhlar, D.G., AMSOL-version 1.0 (program no. 606 of the Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN), QCPE Bull., 11 (1991) 57.
Dewar Research Group and Stewart, J.J.P., AMPAC-version 1 (program no. 506 of the Quantum Chemistry Program Exchange), QCPE Bull., 6 (1986) 24a.
Liotard, D.A., Healy, E.F., Ruiz, J.M. and Dewar, M.J.S., AMPAC-version 2.1 (program no. 506 of the Quantum Chemistry Program Exchange), QCPE Bull., 9 (1989) 123.
Cramer, C.J., Lynch, G.C. and Truhlar, D.G., AMSOL-version 3.0.1 and 3.0.1c. The new versions are also available from Quantum Chemistry Program Exchange, as version 3.0.1 of program no. 606.
Pratt, L.R. Chandler, D., J. Chem. Phys., 67 (1977) 3683.
Wilson, C., Mace, J.E. and Agard, D.A., J. Mol. Biol., 220 (1991) 495.
George, P., Witonsky, R.J., Trachtman, M., Wu, C., Dorwart, W., Richman, L., Richman, W., Shurayh, F. and Lentz, B., Biochim. Biophys. Acta, 223 (1970) 1.
Weast, R.C., (Ed.) Handbook of Chemistry and Physics, 67th ed., CRC Press, Boca Raton, 1986, p. D-163.
Lim, C., Bashford, D. and Karplus, M., J. Phys. Chem., 95 (1991) 5610.
Wolfenden, R., J. Amer. Chem. Soc., 98 (1976) 1987.
Wolfenden, R., Biochem., 17 (1978) 201.
Radzicka, A., Pederson, L. and Wolfenden, R., Biochem., 27 (1988) 4538.
Jorgensen, W.L. and Gao, J., J. Amer. Chem. Soc., 110 (1988) 4212.
Yu, H.-A., Pettit, B.M. and Karplus, M., J. Amer. Chem. Soc. 113 (1991) 2425.
Jorgensen, W.L., J. Phys. Chem., 87 (1983) 5304.
Rosenberg, R.O., Mikkeleni, R. and Berne, B.J., J. Amer. Chem. Soc., 104 (1982) 7647.
Jorgensen, W.L., J. Chem. Phys., 77 (1982) 5757.
Curtiss, L.A., Frurip, D.J. and Blander, M., J. Chem. Phys., 71 (1979) 2703.
Szalewicz, K., Cole, S.J., Kolos, W. and Bartlett, R.J., J. Chem. Phys., 89 (1988) 3662.
Bondi, A., J. Phys. Chem., 68 (1964) 441.
Freed, K.F., In Segal, G.A. (Ed.) Semiempirical Methods of Electronic Structure Calculation, Part A: Techniques, Plenum, New York, 1977, p. 201.
Mori, H., Progr. Theor. Phys., 33 (1965) 423.
Grabert, H., Projection Operator Techniques in Nonequlibrium Statistical Mechanics, Springer-Verlag, Berlin, 1982.
Gonzalez-Lafont, A., Truong, T.N. and Truhlar, D.G., J. Phys. Chem., 95 (1991) 4618.
Viggiano, A.A., Paschkewitz, J., Morris, R.A., Paulson, J.F., Gonzalez-Lafont, A. and Truhlar, D.G., J. Amer. Chem. Soc., 113 (1991) 9404.
Besler, B.H., Merz, K.M., Jr. and Kollman, P.A., J. Comput. Chem., 11 (1990) 431.
Dewar, M.J.S. and Thiel, W., J. Amer. Chem. Soc., 99 (1977) 4899; 4907.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cramer, C.J., Truhlar, D.G. AM1-SM2 and PM3-SM3 parameterized SCF solvation models for free energies in aqueous solution. J Computer-Aided Mol Des 6, 629–666 (1992). https://doi.org/10.1007/BF00126219
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00126219