Skip to main content
Log in

Low temperature thermal conductivity of twinned and untwinned indium-thallium alloys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The low-temperature lattice thermal conductivity of twinned and untwinned, martensitic and non-martensitic, indium-thallium alloys has been measured to probe the effect of twin boundaries on phonon thermal transport. The phonon scattering by electrons, sample surfaces, dislocations, and thallium “impurities” is accounted for adequately by existing theoretical models. The reduced lattice thermal conductivity seen in twinned samples is attributed to additional phonon scattering by twin boundaries and, for the polycrystalline samples, by grain boundaries. Phonon scattering by twin boundaries is much weaker than that generally reported for grain boundaries, and is well represented by an acoustic-mismatch model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Berman, Proc. Phys. Soc. 65, 67 (1952).

    Google Scholar 

  2. K. A. McCarthy, in Proceedings of the Ninth International Conference on Low Temperature Physics (Plenum, New York, 1965), p. 1155.

    Google Scholar 

  3. E. P. Roth and A. C. Anderson, Phys. Stat. Sol. B 93, 261 (1979).

    Google Scholar 

  4. M. Jirmanus and H. H. Sample, J. Appl. Phys. 45, 5457 (1974).

    Google Scholar 

  5. E. P. Roth and A. C. Anderson, Phys. Rev. B 17, 3356 (1978).

    Google Scholar 

  6. M. W. Burkart and T. A. Read, J. Metals 5, 1516 (1953).

    Google Scholar 

  7. J. T. A. Pollock and H. W. King, J. Mater. Sci. 3, 372 (1968).

    Google Scholar 

  8. H. L. Luo, S. Hagen, and M. F. Merriam, Acta Metall. 13, 1012 (1965).

    Google Scholar 

  9. L. Guttman, Trans. AIME 188, 1472 (1950).

    Google Scholar 

  10. H. Kuriyake, T. Fukami, and S. Mase, J. Phys. Soc. Jpn. 54, 989 (1985).

    Google Scholar 

  11. Z. S. Basinski and J. W. Christian, Acta Metall. 2, 101 (1954).

    Google Scholar 

  12. J. S. Bowles, C. S. Barrett, and L. Guttman, Trans. AIME 188, 1478 (1950).

    Google Scholar 

  13. D. S. Gunton and G. S. Saunders, Solid State Comm. 14, 865 (1974).

    Google Scholar 

  14. H. Schumann, Crystal Res. Technol. 17, 1031 (1982).

    Google Scholar 

  15. Y. Koyama and O. Nittono, J. de Physique 43, C4–145 (1982).

    Google Scholar 

  16. O. Nittono and Y. Koyama, Sci. Rep. Inst. Tohiko Univ., Ser. A 29, 53 (1981).

    Google Scholar 

  17. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon London, 1965), p. 816.

    Google Scholar 

  18. J. W. Vandersande, P. N. Chopra, and R. O. Pohl, in Phonon Scattering in Condensed Matter IV, W. Eisenmeyer, K. Lassman, and S. Döttinger, eds. (Springer, Berlin, 1984), p. 182.

    Google Scholar 

  19. J. W. Vandersande and R. O. Pohl, Geophys. Res. Lett. 9, 820 (1982).

    Google Scholar 

  20. A. J. H. Mante and J. Volger, Phys. Lett. 24A, 139 (1967).

    Google Scholar 

  21. T. Matsuo and H. Suzuki, Phys. Soc. Jpn. 43, 1974 (1977).

    Google Scholar 

  22. L. S. Mitchell, Ph.D. Thesis (University of Illinois at Urbana-Champaign, 1992) unpublished.

    Google Scholar 

  23. N. E. Phillips, Phys. Rev. 100, 1719 (1955).

    Google Scholar 

  24. L. V. Munukutla and R. L. Cappalletti, Phys. Rev. B 21, 5111 (1980).

    Google Scholar 

  25. M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, Phys. Rev. B 12, 4487 (1975).

    Google Scholar 

  26. R. Berman, E. L. Foster, and J. M. Ziman, Proc. Roy. Soc. (London) 231A, 130 (1955).

    Google Scholar 

  27. R. Berman, F. E. Simon, and J. M. Ziman, Proc. Roy. Soc. (London) 220A, 171 (1953).

    Google Scholar 

  28. T. Klitsner, J. E. Van Cleve, H. E. Fischer, and R. O. Pohl, Phys. Rev. B 38, 7576 (1987).

    Google Scholar 

  29. A. K. McCurdy, Phys. Rev. B 26, 6971 (1982).

    Google Scholar 

  30. C. J. Winternheimer and A. J. McCurdy, Phys. Rev. B 18, 6576 (1977).

    Google Scholar 

  31. D. Kechrakos, J. Phys. C: Condens. Matter 3, 1443 (1991).

    Google Scholar 

  32. P. G. Klemens, Proc. Phys. Soc. London A68, 1113 (1955).

    Google Scholar 

  33. Ashcroft and Merman, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), p. 637.

    Google Scholar 

  34. P. G. Klemens, Can. J. Phys. 35, 441 (1959).

    Google Scholar 

  35. O. Weis, Z. Phys. B 34, 55 (1979).

    Google Scholar 

  36. M. Weilert (unpublished).

  37. I. M. Lifshitz and A. M. Kosevich, Report Prog. Phys. 29, 217 (1966).

    Google Scholar 

  38. P. Masri and L. Dobrzynski, J. de Physique 36, 551 (1975).

    Google Scholar 

  39. V. N. Nechaev and A. M. Roshchupkin, Sov. Phys. Solid State 33, 410 (1991).

    Google Scholar 

  40. B. Horovitz, G. R. Barsch, and J. A. Krumhansl, Phys. Rev. B 36, 8895 (1987).

    Google Scholar 

  41. B. Horovitz, G. R. Barsch, and J. A. Krumhansl, Phys. Rev. B 43, 1021 (1991).

    Google Scholar 

  42. A. C. Anderson, in Dislocations in Solids, F. R. N. Nalarro, ed. (North-Holland, New York, 1983), p. 237.

    Google Scholar 

  43. P. W. Bridgeman, Proc. Amer. Acad. Arts. Sci. 84, 1 (1955).

    Google Scholar 

  44. M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Consultants Bureau, New York, 1964).

    Google Scholar 

  45. C. N. Reid, Deformation Geometry for Materials Scientists (Pergamon, Oxford, 1973), pp. 179–202.

    Google Scholar 

  46. W. G. Pfann in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1957), Vol. 4, p. 424.

    Google Scholar 

  47. G. Schoeck, J. Appl. Phys. 33, 1745 (1962).

    Google Scholar 

  48. P. Jacquet, Metall. Rev. 1, 157 (1956).

    Google Scholar 

  49. R. J. Sladek, Phys. Rev. 97, 902 (1955).

    Google Scholar 

  50. J. W. Stout and L. Guttman, Phys. Rev. 88, 713 (1952).

    Google Scholar 

  51. B. S. Chandrasekhar and J. A. Rayne, Phys. Rev. 124, 1011 (1961).

    Google Scholar 

  52. In Ref. 49 it was reported that the electron-phonon interaction depends on the thallium concentration, whereas we find a concentration-independent interaction. We believe that the analysis of Ref. 49 is in error because the influence of point-defect scattering of phonons had been neglected.

  53. P. G. Klemens, in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1958), Vol. 7, p. 1.

    Google Scholar 

  54. Y. Kogure and Y. Hiki, J. Phys. Soc. Japan 38, 471 (1975).

    Google Scholar 

  55. R. A. Brown, J. de Physique, 42, C6–271 (1981).

    Google Scholar 

  56. K. A. Gschneider, in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic, New York, 1964), Vol. 16, p. 275.

    Google Scholar 

  57. R. Berman, Thermal Conduction in Solids (Clarendon, Oxford, 1976).

    Google Scholar 

  58. This model is less successful when applied to samples l, 1A, or 1B which reveal stronger phonon scattering and a more complex temperature dependence, see Ref. 22. Note that boule 1 was the first manufactured, the only martensitic alloy made with argon gas instead of air, the only boule pressed between glass plates to make the surface smooth enough to view twins, and the only boule cut by hand with a razor blade.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, L.S., Anderson, A.C. Low temperature thermal conductivity of twinned and untwinned indium-thallium alloys. J Low Temp Phys 91, 341–369 (1993). https://doi.org/10.1007/BF00125429

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125429

Keywords

Navigation