Skip to main content
Log in

A quantum-mechanical study of the chain-length dependent stability of the extended and 310-helix conformations in dehydroalanine oligopeptides

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A quantum-chemical study of the chain-length dependent stability of the extended, 27-ribbon and 310-helix conformations in dehydroalanine (ΔAla) oligopeptides has been performed by using both semiempirical AM1 and ab initio 4–31G methodologies. The validity of both methods in the study of the conformational properties of ΔAla oligopeptides was tested first on the dipeptide. The results of this test showed that 4–31G and AM1 calculations are in good agreement with 6–31G* calculations and experimental data. In order to monitor the conformational conversions, ΔAla oligopeptides comprising two to six residues were constructed. Molecular geometries were fully optimized using AM1, and the final conformations were verified to be minima by analysis of the corresponding second-derivative matrices. Conformational studies revealed that the 310-helix is stabilized with respect to the 27-ribbon when the number of residues is three or four, at the AM1 and ab initio 4–31G level respectively, while the extended form is the most stable in all the calculations performed. On the other hand, if a linear behaviour is assumed for longer chains, our calculations show a trend that would predict a conversion from extended form to 310-helix in oligopeptides with around six (ab initio 4–31G) or eight (AM1) ΔAla residues. In order to explain these conformational changes, the cooperative effects for the different conformers were investigated. Large cooperative energy effects were found for the 310-helix conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaram, P., Proc. Ind. Acad. Sci. Chem. Sci., 93 (1984) 703.

    Google Scholar 

  2. Fasman, G.D., Trends Biochem. Sci., 14 (1989) 295.

    Google Scholar 

  3. Robson, B. and Garnier, J., Introduction to Proteins and Protein Engineering, Elsevier, Amsterdam, 1988.

    Google Scholar 

  4. Karles, I.L., Flippen-Anderson, J.L., Uma, K. and Balaram, P., Biochemistry, 28 (1989) 6696.

    Google Scholar 

  5. Paterson, Y., Rumsey, S.M., Benedetti, E., Nemethy, G. and Scheraga, H.A., J. Am. Chem. Soc., 103 (1981) 2947.

    Google Scholar 

  6. Ajò, D., Casarin, M. and Granozzi, G., J. Mol. Struct. (THEOCHEM), 86 (1982) 297.

    Google Scholar 

  7. Alagona, G., Ghio, C. and Pratesi, C., J. Comput. Chem., 8 (1991) 934.

    Google Scholar 

  8. Karle, I.L., Flippen-Anderson, J.L., Uma, K. and Balaram, P., Curr. Sci., 59 (1990) 875.

    Google Scholar 

  9. Alemán, C., Subirana, J.A. and Perez, J.J., Biopolymers, 32 (1992) 621.

    Google Scholar 

  10. Alemán, C. and Perez, J.J., Int. J. Quant. Chem., 47 (1993) 231.

    Google Scholar 

  11. Bella, J., Alemán, J., Alegre, C., Fernández-Santín, J.M. and Subirana, J.A., Macromolecules, 25 (1992) 5225.

    Google Scholar 

  12. Palmer, D.E., Pattaroni, C., Nunami, K., Chadha, R.K., Goodman, M., Wukamiya, T., Fukasi, K., Horimoto, S., Kitazawa, M., Fujita, H., Kubo, A. and Shiba, T., J. Am. Chem. Soc., 114 (1992) 5634.

    Google Scholar 

  13. Alemán, C. and Perez, J.J., Biopolymers, 33 (1993) 1811.

    Google Scholar 

  14. Gross, E. and Morell, J.L., J. Am. Chem. Soc., 89 (1967) 2791.

    Google Scholar 

  15. Gross, E., Morell, J.L. and Craig, L.C., Proc. Natl. Acad. Sci. USA, 62 (1969) 952.

    Google Scholar 

  16. Allgaier, H., Hung, G., Weiner, R.G., Schneider, U. and Zahner, H., Angew. Chem., Int. Ed. Engl., 24 (1985) 1051.

    Google Scholar 

  17. Kellner, R., Jung, G., Horner, T., Zahner, H., Schnell, N., Entian, K.D. and Gotz, F., Eur. J. Biochem., 177 (1988) 53.

    Google Scholar 

  18. Parkhurst, J.R. and Hodgins, D.S., Arch. Biochem. Biophys., 152 (1972) 597.

    Google Scholar 

  19. Wickner, R.B., J. Biol. Chem., 244 (1969) 6550.

    Google Scholar 

  20. Freund, S., Jung, G., Gutbrod, O., Folkers, G., Gibbans, W.A., Allgaier, H. and Werner, R., Biopolymers 31 (1991) 803.

    Google Scholar 

  21. Tori, K., Tokura, K., Yoshimura, Y., Okabe, K., Otsuka, H., Inagaki, F. and Miyazawa, T.M., J. Antibiot., 32 (1979) 1072.

    Google Scholar 

  22. Gupta, A. and Chauhan, V.S., Biopolymers, 30 (1990) 395.

    Google Scholar 

  23. Pascard, C., Ducruix, A., Lunel, J. and Parngé, T., J. Am. Chem. Soc., 99 (1977) 6418.

    Google Scholar 

  24. Ajò, D., Granozzi, G., Tondello, E., Del Prà, A. and Zanotti, G., J. Chem. Soc., Perkin Trans. II, (1979) 927.

    Google Scholar 

  25. Anderson, B., Hodgkin, D.C. and Viswamitra, M.A., Nature, 225 (1970) 233.

    Google Scholar 

  26. Padmanabhan, B., Dey, S., Khandelwal, B., Rao, G.S. and Singh, T.P., Biopolymers, 32 (1992) 1271.

    Google Scholar 

  27. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta, 28 (1973) 213.

    Google Scholar 

  28. Ditchfield, R., Hehre, W.J. and Pople, J.A., J. Chem. Phys., 54 (1971) 724.

    Google Scholar 

  29. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  30. Alemán, C. and Orozco, M., J. Comput.-Aided Mol. Design, 6 (1992) 331.

    Google Scholar 

  31. Alemán, C. and Perez, J.J., J. Mol. Struct. (THEOCHEM), 285 (1993) 221.

    Google Scholar 

  32. Dannenberg, J.J. and Vinson, L.K., J. Phys. Chem., 92 (1988) 5635.

    Google Scholar 

  33. Vinson, L.K. and Dannenberg, J.J., J. Am. Chem. Soc., 111 (1989) 2777.

    Google Scholar 

  34. Alemán, C. and Perez, J.J., J. Comput.-Aided Mol. Design, 7 (1993) 241.

    Google Scholar 

  35. Fletcher, R. and Powell, M.J.D., Comput. J., 6 (1963) 163.

    Google Scholar 

  36. Davidson, W.C., Comput. J., 6 (1968) 406.

    Google Scholar 

  37. McIver, J.W. and Komornicki, A., J. Am. Chem. Soc., 94 (1972) 2625.

    Google Scholar 

  38. Dupuis, M., Watts, J.D., Villar, H.O. and Hurst, G.J.B., HONDO 7.0 Manual, 1987.

  39. Olivella, S., QCPE Bull., 4 (1984) 10.

    Google Scholar 

  40. Stewart, J.J.P., QCPE Bull., 3 (1983) 431.

    Google Scholar 

  41. Schafer, L., Newton, S.Q., Cao, M., Peeters, A., Van Alsenoy, C., Wolinski, K. and Momany, F.A., J. Am. Chem. Soc., 115 (1993) 272.

    Google Scholar 

  42. Van Duijnen, P.T. and Thole, B.T., Biopolymers, 21 (1982) 1749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casanovas, J., Alemán, C. A quantum-mechanical study of the chain-length dependent stability of the extended and 310-helix conformations in dehydroalanine oligopeptides. J Computer-Aided Mol Des 8, 441–448 (1994). https://doi.org/10.1007/BF00125378

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125378

Key words

Navigation