Skip to main content
Log in

Nucleotide-binding properties of adenylate kinase from Escherichia coli: A molecular dynamics study in aqueous and vacuum environments

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The complex of adenylate kinase with its transition-state inhibitor has been studied by molecular dynamics simulations in water and in vacuum environments with the GROMOS force field over a period of 300 ps. The adenylate kinase, a member of the nucleotide-binding protein family, was exemplarily chosen for the inspection of the nucleotide-binding properties in the active site. The ligand binding and the domain movements have been studied in detail over the simulation period and compared with the crystal structure. Secondary structure transitions and domain closures defined those parts of the structure which are involved in an induced-fit movement of the enzyme. The presence of more stable hydrogen bonds on the substrate side leads to the assumption that substrate binding is more specific than cosubstrate binding. Reliable results were achieved only if water was explicitly included in the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schulz, G.E., Curr. Opin. Struct. Biol., 2 (1992) 61.

    Google Scholar 

  2. Baker, P.J., Britton, K.L., Rice, D.W., Rob, A. and Stillman, T.J., J. Mol. Biol., 228 (1992) 662.

    Google Scholar 

  3. Elion, G.B., Furman, P.A., Fyfe, J.A., DeMiranda, P., Beauchamp, L. and Schaeffer, H.J., Proc. Natl. Acad. Sci. USA, 74 (1977) 5716.

    Google Scholar 

  4. Munch-Petersen, B. and Tyrsted, G., Leuk. Res., 12 (1988) 173.

    Google Scholar 

  5. Folkers, G., Trumpp-Kallmeyer, S., Gutbrod, O., Krickl, S., Fetzer, J. and Keil, G.M., J. Comput.-Aided Mol. Design, 5 (1991) 385.

    Google Scholar 

  6. Schulz, G.E., Schiltz, E., Tomaselli, A.G., Frank, R., Brune, M., Wittinghofer, A. and Schirmer, R.H., Eur. J. Biochem., 161 (1986) 127.

    Google Scholar 

  7. Diederichs, K. and Schulz, G.E., Biochemistry, 29 (1990) 8138.

    Google Scholar 

  8. Tsai, M.-D. and Yan, H., Biochemistry, 30 (1991) 6806.

    Google Scholar 

  9. Liang, P., Phillips Jr., G.N. and Glaser, M., Proteins, 9 (1991) 28.

    Google Scholar 

  10. Müller, C.W. and Schulz, G.E., J. Mol. Biol., 224 (1992) 159.

    Google Scholar 

  11. Saraste, M., Sibbald, P.R. and Wittinghofer, A., Trends Biochem. Sci., 15 (1990) 430.

    Google Scholar 

  12. Schulz, G.E., Müller, C.W. and Diederichs, K., J. Mol. Biol., 213 (1990) 627.

    Google Scholar 

  13. Holmes, R.K. and Singer, M.F., J. Biol. Chem., 248 (1973) 2014.

    Google Scholar 

  14. Van Gunsteren, W.F. and Berendsen, H.J.C., Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen, 1987.

    Google Scholar 

  15. SYBYL 6.0, Tripos Associates, Inc., St. Louis, MO.

  16. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., J. Phys. Chem., 91 (1987) 6269.

    Google Scholar 

  17. Ryckaert, J.P., Cicotti, G. and Berendsen, H.J.C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  18. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  19. Levitt, M. and Sharon, R., Proc. Natl. Acad. Sci. USA, 85 (1988) 7557.

    Google Scholar 

  20. Harte, W.E., Swaminathan, S. and Beveridge, D.L., Proteins, 13 (1992) 175.

    Google Scholar 

  21. Foley, C.K., Pedersen, L.G., Charifson, P.S., Darden, T.A., Wittinghofer, A., Pai, E.F. and Anderson, M.W., Biochemistry, 31 (1992) 4951.

    Google Scholar 

  22. Kabsch, W. and Sander, C., Biopolymers, 22 (1983) 2577.

    Google Scholar 

  23. Schulz, G.E., Curr. Opin. Struct. Biol., 2 (1992) 61.

    Google Scholar 

  24. Gerstein, M., Schulz, G. and Chotia, C., J. Mol. Biol., 229 (1993) 494.

    Google Scholar 

  25. Saint-Girons, I., Gilles, A., Margarita, D., Michelson, S., Monnot, M., Fermandjian, S., Danchin, A. and Barzu, O., J. Biol. Chem., 262 (1987) 622.

    Google Scholar 

  26. Schulz, G.E., Müller, C.W. and Diederichs, K., J. Mol. Biol., 213 (1990) 627.

    Google Scholar 

  27. Reinstein, J., Schlichting, I. and Wittinghofer, A., Biochemistry, 29 (1990) 7451.

    Google Scholar 

  28. Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W. and Wittinghofer, A., EMBO J., 9 (1990) 2351.

    Google Scholar 

  29. Kjeldgaard, M. and Nyborg, J., J. Mol. Biol., 223 (1992) 721.

    Google Scholar 

  30. Story, R.M. and Steitz, T.A., Nature, 355 (1992) 374.

    Google Scholar 

  31. Shirakihara, Y. and Evans, P.R., J. Mol. Biol., 204 (1988) 973.

    Google Scholar 

  32. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. J. Seydel on the oceasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, P., Brunne, R.M. & Folkers, G. Nucleotide-binding properties of adenylate kinase from Escherichia coli: A molecular dynamics study in aqueous and vacuum environments. J Computer-Aided Mol Des 8, 367–388 (1994). https://doi.org/10.1007/BF00125373

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00125373

Key words

Navigation