Skip to main content
Log in

A simple model for the diurnal variation of the mixing depth and transport flow

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A simple time-dependent numerical model of the depth of the layer of active, surface-based turbulent mixing is combined with the equations governing the wind and potential temperature at the top of this layer and averaged over it and with a force-restore soil temperature model. This results in a useful description of the diurnal behavior of the surface friction velocity, surface heat flux, and near surface temperature as well as the mixing depth and the transport wind. Comparisons with data from Day 33 of the Wangara experiment are favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’, J. Atmos. Sci. 39, 864–878.

    Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary Layer Parameterizations Used in Atmosheric Circulation Models’, Monthly Weather Rev. 105, 215–227.

    Google Scholar 

  • Arya, S. P. S.: 1981, ‘Parameterizing the Height of the Stable Atmospheric Boundary Layer’, J. Appl. Meteorol. 20, 1192–1202.

    Google Scholar 

  • Brown, R. A.: 1978, ‘Similarity Parameters from First-Order Closure and Data’, Boundary-Layer Meteorol. 14, 381–396.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Layer’, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, The Wangara Experiment: Boundary Layer Data, CSIRO, Div. of Meteorol. Phys. Tech. Paper No. 19, 340 pp.

  • Deardorff, J. W.: 1974, ‘Three Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’, J. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • Deardorff, J. W.: 1979, ‘Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 100, 351–364.

    Google Scholar 

  • Dickinson, R. E., Jaeger, J., Washington, W. M., and Wolski, R.: 1981, Boundary Layer Subroutine for the NCAR Global Climate Model, NCAR Tech. Note, NCAR/TN — 173 + 1A, 75 pp.

  • Garratt, J. R.: 1982a, ‘Surface Fluxes and the Nocturnal Boundary Layer Height’, J. Appl. Meteorol. 21, 725–729.

    Google Scholar 

  • Garratt, J. R.: 1982b, ‘Observations in the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 22, 21–48.

    Google Scholar 

  • Garratt, J. R. and Francey, R. J.: 1978, ‘Bulk Characteristics of Heat Transfer in the Unstable, Baroclinic Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 15, 399–421.

    Google Scholar 

  • Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’, J. Atmos. Sci. 38, 2730–2746.

    Google Scholar 

  • Garratt, J. R., Wyngaard, J. C., and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer-Prediction and Observation’, J. Atmos. Sci. 39, 1307–1316.

    Google Scholar 

  • Hicks, B. B.: 1976, ‘Wind Profile Relationships from the “Wangara” Experiment’, Quart. J. Roy. Meteorol. Soc. 102, 535–551.

    Google Scholar 

  • Hicks, B. B.: 1981, An Analysis of Wangara Micrometeorology: Surface Stress, Sensible Heat, Evaporation and Dewfall NOAA Tech. Memorandum ERL-104, 36 pp.

  • Idso, S. B.: 1980, ‘On the Apparent Incompatibility of Different Atmospheric Thermal Radiation Data Sets’, Quart. J. Roy. Meteorol. Soc. 106, 375–376.

    Google Scholar 

  • Leovy, C. B.: 1969, ‘Bulk Transfer Coefficient for Heat Transfer’, J. Geophys. Res. 74, 3313–3321.

    Google Scholar 

  • Mahrt, L. J.: 1974, ‘Time Dependent, Integrated Planetary Boundary Layer Flow’, J. Atmos. Sci. 31, 457–464.

    Google Scholar 

  • Mahrt, L.: 1981a, ‘Modelling the Depth of the Stable Boundary-Layer’, Boundary-Layer Meteorol. 21, 3–19.

    Google Scholar 

  • Mahrt, L.: 1981b, ‘The Early Evening Boundary Layer Transition’, Quart. J. Roy. Meteorol. Soc. 107, 329–343.

    Google Scholar 

  • Mahrt, L. and Heald, R. C.: 1979, ‘Comments on “Determining Height of the Nocturnal Boundary Layer”’, J. Appl. Meteorol. 18, 383.

    Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.

    Google Scholar 

  • Mahrt, L. André, J. C., and Heald, R. C.: 1982, ‘On the Depth of the Nocturnal Boundary Layer’, J. Appl. Meteorol. 21, 90–92.

    Google Scholar 

  • Marchuk, G. I.: 1975, Methods of Numerical Mathematics, Springer-Verlag, New York, 316pp.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary-Layer Resistance Laws Based upon Observed Boundary-Layer Heights’, J. Atmos. Sci. 21, 1324–1333.

    Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1975, ‘Revision to “Stability Functions for the Boundary-Layer Resistance Laws Based Upon Observed Boundary Layer Heights”’, J. Atmos. Sci. 32, 837–839.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1980, ‘A Rate Equation for the Inversion Height in a Nocturnal Boundary Layer’, J. Appl. Meteorol. 19, 1445–1447.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1981, ‘The Steady-State Height and Resistance Laws of the Nocturnal Boundary Layer: Theory Compared with Cabauw Observations’, Boundary-Layer Meteorol. 20, 003–017.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’, J. Atmos. Sci. 38, 1418–1428.

    Google Scholar 

  • Smeda, M. S.: 1979, ‘A Bulk Model for the Atmospheric Planetary Boundary Layer’, Boundary-Layer Meteorol. 17, 411–427.

    Google Scholar 

  • Smith, F. B., and Carson, D. J.: 1977, ‘Some Thoughts on the Specification of the Boundary-Layer Relevant to Numerical Modelling’, Boundary-Layer Meteorol. 12, 307–330.

    Google Scholar 

  • Thorpe, A. J. and Guymer, T. H.: 1977, ‘The Nocturnal Jet’, Quart. J. Roy. Meteorol. Soc. 103, 633–653.

    Google Scholar 

  • Wetzel, P. J.: 1982, ‘Toward Parameterization of the Stable Boundary Layer’, J. Appl. Meteorol. 21, 7–13.

    Google Scholar 

  • Wyngaard, J. C.: 1975, ‘Modeling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A, B, and C of the Planetary Boundary Layer’, J. Atmos. Sci. 33, 781–793.

    Google Scholar 

  • Yamada, T.: 1979, ‘Prediction of the Nocturnal Surface Inversion Height’, J. Appl. Meteorol. 18, 526–531.

    Google Scholar 

  • Yamada, T. and Mellor, G.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atmos. Sci. 32, 2309–2329.

    Google Scholar 

  • Yu, T. W.: 1978, ‘Determining Height of the Nocturnal Boundary Layer’, J. Appl. Meteorol. 17, 28–33.

    Google Scholar 

  • Zeman, O.: 1979, ‘Parameterization of the Dynamics of Stable Boundary Layers and Nocturnal Jets’, J. Atmos. Sci. 36, 792–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On assignment from the National Atmospheric and Oceanic Administration, U.S. Department of Commerce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binkowski, F.S. A simple model for the diurnal variation of the mixing depth and transport flow. Boundary-Layer Meteorol 27, 217–236 (1983). https://doi.org/10.1007/BF00124999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124999

Keywords

Navigation