Skip to main content
Log in

Towards an understanding of the molecular basis of hydrophobicity

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

The modern view is stressed that the structuring of water around nonpolar solutes, a process called hydrophobic hydration, actually favors the solubility of nonpolar solutes in water, its associated positive free energy of transfer arising from the enthalpic input required to create a cavity in water to accommodate the solute. The results of a series of molecular dynamics simulations of methane in SPC/E water at different temperatures are reported. These results show the existence of a larger fraction of broken hydrogen bonds in the hydration-shell water of the nonpolar solutes with respect to the bulk water, the difference increasing with a rise in temperature. This supports Muller's modified hydration-shell hydrogen-bond model predictions, where hydration-shell water molecules have lower free energies of hydrogen-bond breaking than those in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TanfordC., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, NY, 1973.

    Google Scholar 

  2. FranksF. (Ed.) Water, a Comprehensive Treatise, Vol. 4, Plenum Press, New York, NY, 1975, Ch. 1.

    Google Scholar 

  3. Ben-NaimA., Hydrophobic Interactions, Plenum Press, New York, NY, 1980.

    Google Scholar 

  4. MullerN., J. Solution Chem., 17 (1988) 661.

    Google Scholar 

  5. MullerN., Acc. Chem. Res. 23 (1990) 23.

    Google Scholar 

  6. CostasM., KronbergB. and SilvestonR.J., J. Chem. Soc., Faraday Trans., 90 (1994) 1513.

    Google Scholar 

  7. KronbergB., CostasM. and SilvestonR.J., Dispers. Sci. Technol., 15 (1994) 333.

    Google Scholar 

  8. NémethyG. and ScheragaH.A., J. Chem. Phys., 36 (1962) 3401.

    Google Scholar 

  9. ShinodaK. and FujihiraM., Bull. Chem. Soc. Jpn., 41 (1968) 2612.

    Google Scholar 

  10. ShinodaK., J. Phys. Chem., 81 (1977) 1300.

    Google Scholar 

  11. HvidtA., Acta Chem. Scand. A, 37 (1983) 99.

    Google Scholar 

  12. PrivalovP.L. and GillS.J., Adv. Protein Chem., 39 (1988) 191.

    Google Scholar 

  13. PrivalovP.L. and GillS.J., Pure Appl. Chem., 61 (1989) 1097.

    Google Scholar 

  14. GillS.J., DecS.F., OlofssonG. and WadsöI., J. Phys. Chem. 89 (1985) 3758.

    Google Scholar 

  15. DecS.F. and GillS.J., J. Solution Chem., 14 (1985) 417.

    Google Scholar 

  16. DecS.F. and GillS.J., J. Solution Chem., 14 (1985) 827.

    Google Scholar 

  17. GillS.J. and WadsoI., Proc. Natl. Acad. Sci. USA, 73 (1976) 2955.

    Google Scholar 

  18. MirejovskyD. and ArnettE.M., J. Am. Chem. Soc., 105 (1983) 1112.

    Google Scholar 

  19. LazaridisT. and PaulaitisM.E., J. Phys. Chem., 96 (1992) 3847.

    Google Scholar 

  20. GeigerA., RahmanA. and StillingerF.H., J. Chem. Phys., 70 (1979) 263.

    Google Scholar 

  21. ManceraR.L. and BuckinghamA.D., J. Phys. Chem., 99 (1995) 14632.

    Google Scholar 

  22. BradlS. and LangE.W., J. Phys. Chem., 97 (1993) 10463.

    Google Scholar 

  23. BradlS., LangE.W., TurnerJ.Z. and SoperA.K., J. Phys. Chem., 98 (1994) 8161.

    Google Scholar 

  24. HaselmeierR., HolzM., MarbachW. and WeingartnerH., J. Phys. Chem., 99 (1995) 2243.

    Google Scholar 

  25. ManceraR.L. and BuckinghamA.D., Chem. Phys. Lett., 234 (1995) 296.

    Google Scholar 

  26. SkipperN.T., Chem. Phys. Lett., 207 (1993) 424.

    Google Scholar 

  27. PattersonD. and BarbeM., J. Phys. Chem., 80 (1976) 2435.

    Google Scholar 

  28. Mancera, R.L., J. Chem. Soc. Faraday Trans., (1996) in press.

  29. K.Refson, Molecular dynamics simulation code, Moldy, Department of Earth Sciences, Oxford University, Oxford, U.K., 1988, 1992, 1993.

    Google Scholar 

  30. BerendsenH.J.C., GrigeraJ.R. and StraatsmaT.P., J. Phys. Chem., 91 (1987) 6269.

    Google Scholar 

  31. JorgensenW.L., MaduraJ.D. and SwensonC.J., J. Am. Chem. Soc., 106 (1984) 6638.

    Google Scholar 

  32. SciortinoF., GeigerA. and StanleyH.E., Nature, 354 (1991) 218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation given at the 14th Molecular Graphics and Modelling Society Conference, held in Cairns, Australia, August 27 September 1, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancera, R.L. Towards an understanding of the molecular basis of hydrophobicity. J Computer-Aided Mol Des 10, 321–326 (1996). https://doi.org/10.1007/BF00124501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124501

Keywords

Navigation