Skip to main content
Log in

Active-site-directed 3D database searching: Pharmacophore extraction and validation of hits

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Two new computational tools, PRO_PHARMEX and PRO_SCOPE, for use in active-site-directed searching of 3D databases are described. PRO_PHARMEX is a flexible, graphics-based program facilitating the extraction of pharmacophores from the active site of a target macromolecule. These pharmacophores can then be used to search a variety of databases for novel lead compounds. Such searches can often generate many ‘hits’ of varying quality. To aid the user in setting priorities for purchase, synthesis or testing, PRO_SCOPE can be used to dock molecules rapidly back into the active site and to assign them a score using an empirical scoring function correlated to the free energy of binding. To illustrate how these tools can add value to existing 3D database software, their use in the design of novel thrombin inhibitors is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin Y.C., J. Med. Chem., 35 (1992) 2145.

    Google Scholar 

  2. RusinkoIII A., Skell J.M., Balducci R., McGarity C.M. and Pearlman R.S., Concord: A program for the rapid generation of high-quality approximate 3-dimensional molecular structures, The University of Texas at Austin, TX, and Tripos Associates, St. Louis, MO, U.S.A., 1988.

    Google Scholar 

  3. CHEM-X, Chemical Design Ltd., Chipping Norton, Oxfordshire, U.K,, 1995.

  4. Sadowski J. and Gasteiger J., Chem. Rev., 93 (1993) 2567.

    Google Scholar 

  5. CONVERTER, v. 2.3, Molecular Simulations Inc., San Diego, CA, U.S.A., 1995.

  6. COBRA, v. 3.0, Oxford Molecular Group, Oxford, U.K., 1993.

  7. Hendrickson M.A., Nicklaus M.C. and Milne G.W.A., J. Chem. Inf. Comput. Sci., 33 (1993) 155.

    Google Scholar 

  8. Nicklaus M.C. and Milne G.W.A., J. Chem. Inf. Comput. Sci., 33 (1993) 639.

    Google Scholar 

  9. Ricketts E.M., Bradshaw J., Hann M., Hayes F. and Tanna N., J. Chem. Inf. Comput. Sci., 33 (1993) 905.

    Google Scholar 

  10. Pearlman R.S., In Kubinyi H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 41–79.

    Google Scholar 

  11. Sadowski J., Gasteiger J. and Klebe G., J. Chem. Inf. Comput. Sci., 34 (1994) 1000.

    Google Scholar 

  12. Bures M.G., Martin Y.C. and Willett P., Top. Stereochem., 21 (1994) 467.

    Google Scholar 

  13. Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R. and Ferrin T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  14. DesJarlais R.L., Sheridan R.P., Seibel G.L., Dixon J.S., Kuntz I.D. and Venkataraghvan R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  15. Meng E.C., Shoichet B.K. and Kuntz I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  16. Meng E.C., Gschwend D.A., Blaney J.M. and Kuntz I.D., Proteins Struct. Funct. Genet., 17 (1993) 266.

    Google Scholar 

  17. Shoichet B.K. and Kuntz I.D., Protein Eng., 6 (1993) 723.

    Google Scholar 

  18. Meng E.C., Kuntz I.D., Abraham D.J. and Kellogg G.E., J. Comput.-Aided Mol. Design, 8 (1994) 299.

    Google Scholar 

  19. Lawrence M.C. and Davis P.C., Proteins Struct. Funct. Genet., 12 (1992) 31.

    Google Scholar 

  20. Böhm H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 623.

    Google Scholar 

  21. Miller M.D., Kearsley S.K., Underwood D.J. and Sheridan R.P., J. Comput.-Aided Mol.Design, 8 (1994) 153.

    Google Scholar 

  22. Gund P., Prog. Mol. Subcell. Biol., 5 (1977) 117.

    Google Scholar 

  23. Jakes S.E. and Willett P., J. Mol. Graph., 4 (1986) 12.

    Google Scholar 

  24. Jakes S.E., Watts N.J., Willett P., Bawden D. and Fisher J.D., J. Mol. Graph., 5 (1987) 41.

    Google Scholar 

  25. Brint A.T. and Willett P., J. Mol. Graph., 5 (1987) 49.

    Google Scholar 

  26. Clark D.E., Willett P. and Kenny P.W., J. Mol. Graph., 10 (1992) 194.

    Google Scholar 

  27. Clark D.E., Jones G., Willett P., Kenny P.W. and Glen R.C., J. Chem. Inf. Comput. Sci., 34 (1994) 197.

    Google Scholar 

  28. Sheridan R.P., Nilakantan R., RusinkoIII A., Bauman N., Haraki K.S. and Venkataraghavan R., J. Chem. Inf. Comput. Sci., 29 (1989) 255.

    Google Scholar 

  29. Van Drie J.H., Weininger D. and Martin Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.

    Google Scholar 

  30. Murrell N.W. and Davies E.K., J. Chem. Inf. Comput. Sci., 30 (1990) 312.

    Google Scholar 

  31. Hurst T., J. Chem. Inf. Comput. Sci., 34 (1994) 190.

    Google Scholar 

  32. Moock T.E., Henry D.R., Ozkabak A.G. and Alamgir M., J. Chem. Inf. Comput. Sci., 34 (1994) 184.

    Google Scholar 

  33. Downs G.M. and Willett P., In Boyd D.B. and Lipkowitz K.B. (Eds.) Reviews in Computational Chemistry, Vol. 7, VCH, New York, NY, U.S.A., 1996, pp. 1–66.

    Google Scholar 

  34. Kuntz I.D., Science, 257 (1992) 1078.

    Google Scholar 

  35. Shoichet B.K., Stroud R.M., Santi D.V., Kuntz I.D. and Perry K.M., Science, 259 (1993) 1445.

    Google Scholar 

  36. Ring C.S., Sun E., McKerrow J.H., Lee G.K., Rosenthal P.J., Kuntz I.D. and Cohen F.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 3583.

    Google Scholar 

  37. Watts C.R., Kerwin S.M., Kenyon G.L., Kuntz I.D. and Kallick D.A., J. Am. Chem. Soc., 117 (1995) 9941.

    Google Scholar 

  38. Lam P.Y.S., Jadhav P.K., Eyermann C.J., Hodge C.N., Ru Y., Bacheler L.T., Meek J.L., Otto M.J., Rayner M.M., Wong Y.N., Chang C.-H., Weber P.C., Jackson D.A., Sharpe T.R. and Erickson-Viitanen S.E., Science, 263 (1994) 380.

    Google Scholar 

  39. Wang S., Zaharevitz D.W., Sharma R., Marquez V.E., Lewin N.E., Du L., Blumberg P.M. and Milne G.W.A., J. Med. Chem., 37 (1994) 4479.

    Google Scholar 

  40. Kiyama R., Homma T., Hayashi K., Ogawa M., Hara M., Fujimoto M. and Fujishita T., J. Med. Chem., 38 (1995) 2728.

    Google Scholar 

  41. Pepperrell C.A. and Willett P., J. Comput.-Aided Mol. Design, 5 (1991) 455.

    Google Scholar 

  42. Turner D.B., Willett P., Ferguson A.M. and Heritage T.W., SAR QSAR Environ. Res., 3 (1995) 101.

    Google Scholar 

  43. Wild D.J. and Willett P., J. Chem. Inf. Comput. Sci., 36 (1996) 159.

    Google Scholar 

  44. Thorner D.A., Wild D.J., Willett P. and Wright P.M., J. Chem. Inf. Comput. Sci., 36 (1996) 900.

    Google Scholar 

  45. Good A.C. and Mason J.S., In Boyd D.B. and Lipkowitz K.B. (Eds.) Reviews in Computational Chemistry, Vol. 7, VCH, New York, NY, U.S.A., 1996, pp. 67–117.

    Google Scholar 

  46. Golender V.E. and Vorpagel E.R., In Kubinyi H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 137–149.

    Google Scholar 

  47. Marshall G.R., Barry C.D., Bosshard H.E., Dammkoehler R.A. and Dunn D.A., In Olson E.C. and Christoffersen R.E. (Eds.) Computer-Assisted Drug Design, ACS Symposium Series, Vol. 112, American Chemical Society, Washington, DC, U.S.A., 1979, pp. 205–226.

    Google Scholar 

  48. Mayer D., Naylor C.B., Motoc I. and Marshall G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.

    Google Scholar 

  49. Dammkoehler R.A., Karasek S.F., Shands E.F.B. and Marshall G.R., J. Comput.-Aided Mol. Design, 3 (1989) 3.

    Google Scholar 

  50. Dammkoehler R.A., Karasek S.F., Shands E.F.B. and Marshall G.R., J. Comput.-Aided Mol. Design, 9 (1995) 491.

    Google Scholar 

  51. Sheridan R.P., Nilakantan R., Dixon J.S. and Venkataraghavan R., J. Med. Chem., 29 (1986) 899.

    Google Scholar 

  52. Martin Y.C., Bures M.G., Danaher E.A., DeLazzar J., Lico I. and Pavlik P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  53. Ghose A.K., Logan M.E., Treasurywala A.M., Wang H., Wahl R.C., Tomczuk B.E., Gowravaram M.R., Jaeger E.P. and Wendoloski J.J., J. Am. Chem. Soc., 117 (1995) 4671.

    Google Scholar 

  54. Jones G., Willett P. and Glen R.C., J. Comput.-Aided Mol. Design, 9 (1995) 532.

    Google Scholar 

  55. Hodgkin E.E., Miller A. and Whittaker M., J. Comput.-Aided Mol. Design, 7 (1993) 515.

    Google Scholar 

  56. Barnum D., Greene J., Smellie A.S. and Sprague P., J. Chem. Inf. Comput. Sci., 36 (1996) 563.

    Google Scholar 

  57. Ho C.M.W. and Marshall G.R., J. Comput.-Aided Mol. Design, 9 (1995) 69.

    Google Scholar 

  58. Glen R.C. and Payne A.W.R., J. Comput.-Aided Mol. Design, 9 (1995) 181.

    Google Scholar 

  59. Clark D.E., Firth M.A. and Murray C.W., J. Chem. Inf. Comput. Sci., 36 (1996) 137.

    Google Scholar 

  60. Van Drie, J.H., Network Science (http://www.awod.com/netsci), 1 (1995).

  61. Upton, R. and Davies, E.K., Poster presented at the 14th International Conference of the Molecular Graphics and Modelling Society, Cairns, Australia, August 27-September 1, 1995.

  62. Clark D.E., Frenkel D., Levy S.A., Li J., Murray C.W., Robson B., Waszkowycz B. and Westhead D.R., J. Comput.-Aided Mol. Design, 9 (1995) 13.

    Google Scholar 

  63. Böhm H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  64. Böhm H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  65. Klebe G., J. Mol. Biol. 237 (1994) 212.

    Google Scholar 

  66. Ritter J., In Glassner A.S. (Ed.) Graphics Gems, Academic Press, London, U.K., 1990, pp. 301–303.

    Google Scholar 

  67. Dalby A., Nourse J.G., Hounshell W.D., Gushurst A.K.I., Grier D., Leland B.A. and Laufer J., J. Chem. Inf. Comput. Sci., 32 (1992) 244.

    Google Scholar 

  68. ISIS/3D, MDL Information Systems Inc., San Leandro, CA, U.S.A., 1995.

  69. Available Chemicals Directory, MDL Information Systems Inc., San Leandro, CA, U.S.A., 1995.

  70. Viswanadhan V.N., Ghose A.K., Revankar G.R. and Robins R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Google Scholar 

  71. Weininger D., J. Chem. Inf. Comput. Sci., 28 (1988) 31.

    Google Scholar 

  72. Grootenhuis P.D.J. and Van Galen P.J.M., Acta Crystallogr. D51 (1995) 560.

    Google Scholar 

  73. Ullmann J.R., J. Assoc. Comput. Machin., 23 (1976) 31.

    Google Scholar 

  74. Murray C.W., Clark D.E. and Byrne D.G., J. Comput.-Aided Mol. Design, 9 (1995) 381.

    Google Scholar 

  75. Hahn M., J. Med. Chem., 38 (1995) 2080.

    Google Scholar 

  76. Gasteiger J. and Marsili M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  77. Davies E.K. and Murrall N.W., Comput. Chem., 13 (1989) 149.

    Google Scholar 

  78. Böhm H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 317.

    Google Scholar 

  79. Walkinshaw M.D., Med. Res. Rev., 12 (1992) 317.

    Google Scholar 

  80. Banner D.W. and Hadvary P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  81. Obst U., Gramlich V., Diederich F., Weber L. and Banner D.W., Angew. Chem. Int. Ed. Engl., 34 (1995) 1739.

    Google Scholar 

  82. Grootenhuis P.D.J. and Karplus M., J. Comput.-Aided Mol. Design, 10 (1996) 1.

    Google Scholar 

  83. DISCOVER, v. 2.9.5, Molecular Simulations Inc., San Diego, CA, U.S.A., 1995.

  84. CFF95 force field, implemented in DISCOVER 2.9.5, Molecular Simulations Inc., San Diego, CA, U.S.A., 1995.

  85. Tapparelli C., Metternich R., Ehrhardt C., Zurini M., Claeson G., Scully M.F. and Stone S.R., J. Biol. Chem., 268 (1993) 4743.

    Google Scholar 

  86. Ajay and Murcko M.A., J. Med. Chem., 38 (1995) 4953.

    Google Scholar 

  87. Klopman G., Wang S. and Balthasar D.M., J. Chem. Inf. Comput. Sci., 32 (1992) 474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, D.E., Westhead, D.R., Sykes, R.A. et al. Active-site-directed 3D database searching: Pharmacophore extraction and validation of hits. J Computer-Aided Mol Des 10, 397–416 (1996). https://doi.org/10.1007/BF00124472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124472

Keywords

Navigation