Journal of Computer-Aided Molecular Design

, Volume 10, Issue 5, pp 361–371 | Cite as

CORCEMA evaluation of the potential role of intermolecular transferred NOESY in the characterization of ligand-receptor complexes

  • Ernest V. Curto
  • Hunter N. B. Moseley
  • N. Rama Krishna
Research Papers


We report a theoretical characterization of the intermolecular transferred NOESY (inter-TrNOESY) between ligands and receptor macromolecules that bind reversibly, using a COmplete Relaxation and Conformational Exchange MAtrix (CORCEMA) theory developed in our laboratory. We examine the dependence of inter-TrNOESY on the dissociation constant, off-rate, ligand-to-receptor ratio, and distance variations between protons of interacting species within the complex. These factors are analyzed from simulations on two model systems: (i) neuraminidase complexed to a transition-state analogue; and (ii) thermolysin complexed to a leucine-based inhibitor. The latter case utilizes a three-state model of interaction to simulate the effect of hinge-bending motions on the inter-TrNOESY. Our calculations suggest a potential role for inter-TrNOESY (when observable) and CORCEMA analysis in properly docking the ligand within the active site, and in refining the conformation of the ligand-receptor (active-site) complex. These findings have implications on the structure-based design of ligands (e.g., inhibitors) reversibly binding to receptors (e.g., enzymes).


Conformational exchange Complete relaxation matrix CORCEMA Hinge-bending Transferred NOESY Structure-based drug design by NMR Ligand-receptor complexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clore G.M. and Gronenborn A.M., J. Magn. Reson., 48 (1982) 402.Google Scholar
  2. 2.
    Clore G.M. and Gronenborn A.M., J. Magn. Reson., 53 (1983) 423.Google Scholar
  3. 3.
    Ni F., Prog. NMR Spectrosc., 26 (1994) 517.Google Scholar
  4. 4.
    Lee W. and Krishna N.R., J. Magn. Reson., 98 (1992) 36.Google Scholar
  5. 5.
    Ni F., J. Magn. Reson., 96 (1992) 651.Google Scholar
  6. 6.
    London R.E., Perlman M.E. and Davis D.G., J. Magn. Reson., 97 (1992) 79.Google Scholar
  7. 7.
    Lippens G.M., Cerf C. and Hallenga K., J. Magn. Reson., 99 (1992) 268.Google Scholar
  8. 8.
    Zheng J. and Post C.B., J. Magn. Reson., B101 (1993) 262.Google Scholar
  9. 9.
    Lian L.Y., Barsokov I.L., Sutcliffe M.J., Sze K.H. and Roberts G.C.K., Methods Enzymol., 239 (1994) 657.Google Scholar
  10. 10.
    Ni F. and Zhu Y., J. Magn. Reson., B103 (1994) 180.Google Scholar
  11. 11.
    Jackson P.L., Moseley H.N.B. and Krishna N.R., J. Magn. Reson., B107 (1995) 289.Google Scholar
  12. 12.
    Moseley, H.N.B., Curto, E.V. and Krishna, N.R., Proceedings of the 35th Experimental NMR Conference, Asilomar, CA, U.S.A., 1994, WP115.Google Scholar
  13. 13.
    Moseley, H.N.B., Curto, E.V. and Krishna, N.R., International Symposium on NMR as a Structural Tool for Macromolecules, Indianapolis, IN, U.S.A., 1994.Google Scholar
  14. 14.
    Moseley H.N.B., Curto E.V. and Krishna N.R., J. Magn. Reson., B108 (1995) 243.Google Scholar
  15. 15.
    Balaram P., Bothner-By A.A. and Breslow E., J. Am. Chem. Soc., 94 (1972) 417.Google Scholar
  16. 16.
    James T.L., Biochemistry, 15 (1976) 4724.Google Scholar
  17. 17.
    Vasak M., Nagoyama K., Wüthrich K., Mertens M.L. and Kagi J.H.R., Biochemistry, 18 (1979) 5050.Google Scholar
  18. 18.
    Fry D.C., Kuby S.A. and Mildvan A.S., Biochemistry, 24 (1985) 4680.Google Scholar
  19. 19.
    Ferrin L.F. and Mildvan A.S., Biochemistry, 24 (1985) 6904.Google Scholar
  20. 20.
    Anglister J. and Zilber B., Biochemistry, 29 (1990) 921.Google Scholar
  21. 21.
    Anglister J., Scherf T., Zilber B., Levy R., Zvi A., Hiller R. and Feigelson D., Faseb J., 7 (1993) 1154.Google Scholar
  22. 22.
    Plesniak L.A., Boegemann S.C., Segelke B.W. and Dennis E.A., Biochemistry, 32 (1993) 5009.Google Scholar
  23. 23.
    Arepalli R.S., Glaudemans C.P.J., DavesJr. G.D., Kovac P. and Bax A., J. Magn. Reson., B106 (1995) 195.Google Scholar
  24. 24.
    Scherf T. and Anglister J., Biophys. J., 64 (1993) 754.Google Scholar
  25. 25.
    Krishna N.R., Goldstein G. and Glickson J.D., Biopolymers, 19 (1980) 2003.Google Scholar
  26. 26.
    Choe B.Y., Cook G.W. and Krishna N.R., J. Magn. Reson., 94 (1991) 387.Google Scholar
  27. 27.
    Janakiraman M.N., White C.L., Laver W.G., Air G.M. and Luo M., Biochemistry, 33 (1994) 8172.Google Scholar
  28. 28.
    Holland D.R., Tronrud D.E., Pley H.W., Flaherty K.M., Stark W., Jansonius J.N., McKay D.B. and Matthews B.W., Biochemistry, 31 (1992) 11310.Google Scholar
  29. 29.
    Quiocho F.A., Curr. Opin. Struct. Biol., 1 (1991) 922.Google Scholar
  30. 30.
    Lumb K.J., Cheetan J.C. and Dobson C.M., J. Mol. Biol., 235 (1994) 1072.Google Scholar
  31. 31.
    Radmacher M., Fritz M., Hansma H.G. and Hansma P.K., Science, 265 (1994) 1577.Google Scholar
  32. 32.
    Lee W., Revington M., Farrow N.A., Nakamura A., Utsunomiya-Tate N., Miyake Y., Kainosho M. and Arrowsmith C.H., J. Biomol. NMR, 5 (1995) 367.Google Scholar
  33. 33.
    Ni F., J. Magn. Reson., B106 (1995) 147.Google Scholar
  34. 34.
    Nilges M., Clore G.M. and Gronenborn A.M., FEBS Lett., 239 (1988) 129.Google Scholar
  35. 35.
    Ikura M., Clore G.M., Gronenborn A.M., Zhu G. and Bax A., Science, 256 (1992) 632.Google Scholar
  36. 36.
    Wider G., Weber C., Traber H., Widmer H. and Wüthrich K., J. Am. Chem. Soc., 112 (1990) 9015.Google Scholar
  37. 37.
    Gemmecker G., Olejniczak E.T. and Fesik S.W., J. Magn. Reson., 96 (1992) 199.Google Scholar
  38. 38 a.
    LeMaster D.M., Methods Enzymol., 177 (1989) 23.Google Scholar
  39. 38 b.
    Nietlispach D., Clowes R.T., Broadhurst R.W., Ito Y., Keeler J., Kelly M., Ashurst J., Oschkinat H., Domaille P.J. and Lave E.D., J. Am. Chem. Soc., 118 (1996) 407.Google Scholar
  40. 39.
    Krishna N.R., Agresti D.G., Glickson J.D. and Walter R., Biophys. J., 24 (1978) 791.Google Scholar
  41. 40.
    Boelens R., Koning T.M.G. and Kaptein R., J. Mol. Struct., 173 (1988) 299.Google Scholar
  42. 41.
    Borgias B.A. and James T.L., Methods Enzymol., 176 (1989) 169.Google Scholar
  43. 42.
    Gorenstein D.G., Meadows R.P., Metz J.T., Nikonowicz E.P. and Post C.P., In Bush C.A. (Ed.) Advances in Biophysical Chemistry, JAI Press, London, U.K., 1990, pp. 47–124.Google Scholar
  44. 43.
    Mertz J.E., Güntert P., Wüthrich K. and Braun W., J. Biomol. NMR, 1 (1991) 257.Google Scholar
  45. 44.
    Xu Y., Sugár I.P. and Krishna N.R., J. Biomol. NMR, 5 (1995) 37.Google Scholar
  46. 45.
    Xu Y., Krishna N.R. and Sugar I., J. Magn. Reson., B107 (1995) 201.Google Scholar
  47. 46.
    Bonvin A.M.J.J., Boelens R. and Kaptein R., Biopolymers, 34 (1994) 39.Google Scholar
  48. 47.
    Xu Y. and Krishna N.R., J. Magn. Reson., B108 (1995) 192.Google Scholar
  49. 48.
    Yip P. and Case D.A., J. Magn. Reson., 83 (1989) 643.Google Scholar
  50. 49.
    Borgias B.A. and James T.L., J. Magn. Reson., 79 (1988) 493.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Ernest V. Curto
    • 1
    • 2
  • Hunter N. B. Moseley
    • 1
    • 2
  • N. Rama Krishna
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular GeneticsThe University of Alabama at BirminghamBirminghamU.S.A.
  2. 2.Comprehensive Cancer CenterThe University of Alabama at BirminghamBirminghamU.S.A.

Personalised recommendations