Journal of Computer-Aided Molecular Design

, Volume 10, Issue 1, pp 1–10 | Cite as

Functionality map analysis of the active site cleft of human thrombin

  • Peter D. J. Grootenhuis
  • Martin Karplus
Research Papers


The Multiple Copy Simultaneous Search methodology has been used to construct functionality maps for an extended region of human thrombin, including the active site. This method allows the determination of energetically favorable positions and orientations for functional groups defined by the user on the three-dimensional surface of a protein. The positions of 10 functional group sites are compared with those of corresponding groups of four thrombin-inhibitor complexes. Many, but not all features, of known thrombin inhibitors are reproduced by the method. The results indicate that certain aspects of the binding modes of these inhibitors are not optimal. In addition, suggestions are made for improving binding by interaction with functional group sites on the thrombin surface that are not used by the thrombin inhibitors.


Thrombin inhibitors Molecular modelling Rational drug design MCSS method 


  1. 1.
    Wallis, R.B., Drugs Today, 25 (1989) 597.Google Scholar
  2. 2.
    Hauptmann, J. and Markwardt, F., Semin. Thromb. Hemost., 18 (1992) 200.Google Scholar
  3. 3.
    Davie, E.W., Fujikawa, K. and Kisiel, W., Biochemistry, 30 (1991) 10363.Google Scholar
  4. 4.
    Berliner, L.J., Thrombin, Structure and Function, Plenum Press, New York, NY, 1992.Google Scholar
  5. 5.
    Fareed, J., Hoppensteadt, D., Walenga, J.M. and Pifarré, R., In Pifarré, R. (Ed.) Anticoagulation, Hemostasis, and Blood Preservation in Cardiovascular Surgery, Hanley & Belfus, Inc., Philadelphia, PA, 1993, pp. 111–128.Google Scholar
  6. 6 a.
    Jakubowski, J.A., Smith, G.F. and Sall, D.J., Annu. Rep. Med. Chem., 27 (1992) 99.Google Scholar
  7. 6 b.
    Tapparelli, C., Metternich, R., Ehrhardt, C. and Cook, N.S., Trends Pharmacol. Sci., 14 (1993) 366.Google Scholar
  8. 6 c.
    Maffrand, J.P., Nouv. Rev. Fr. Hematol., 34 (1992) 405.Google Scholar
  9. 6 d.
    Harker, L.A., Blood Coagul. Fibrinolysis, 5 (1994) S47.Google Scholar
  10. 6 e.
    Lyle, T.A., Persp. Drug Discov. Design, 1 (1993) 453.Google Scholar
  11. 7 a.
    Tulinsky, A., Thromb. Haemostasis, 66 (1991) 16.Google Scholar
  12. 7 b.
    Stubbs, M.T. and Bode, W., Curr. Opin. Struct. Biol., 4 (1994) 823.Google Scholar
  13. 7 c.
    Stubbs, M.T. and Bode, W., Persp. Drug Discov. Design, 1 (1993) 431.Google Scholar
  14. 8.
    Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R. and Hofsteenge, J., EMBO J., 8 (1989) 3467.Google Scholar
  15. 9.
    Banner, D.W. and Hadváry, P., J. Biol. Chem., 266 (1991) 20085.Google Scholar
  16. 10.
    Brandstetter, H., Turk, D., Hoeffken, H.W., Grosse, D., Stürzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.Google Scholar
  17. 11.
    Rydel, T.J., Ravichandran, K.G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C. and Fenton, J.W., Science, 249 (1990) 277.Google Scholar
  18. 12.
    Gütter, M.G., Priestle, J.P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteenge, J. and Stone, S.R., EMBO J., 9 (1990) 2361.Google Scholar
  19. 13.
    Skrzypczak-Jankun, E., Carperos, V.E., Ravichandran, K.G., Tulinsky, A., Westbrook, M. and Maraganore, J.M., J. Mol. Biol., 221 (1991) 1379.Google Scholar
  20. 14.
    Martin, P.D., Robertson, W., Turk, D., Huber, R., Bode, W. and Edwards, B.F.P., J. Biol. Chem., 267 (1992) 7911.Google Scholar
  21. 15 a.
    Stubbs, M.T., Oschkinat, H., Mayr, I., Huber, R., Angliker, H., Stone, S.R. and Bode, W., Eur. J. Biochem., 206 (1992) 187.Google Scholar
  22. 15 b.
    Zdanov, A., Wu, S., DiMaio, J., Konishi, Y., Li, Y., Wu, Z., Edwards, B.F.P., Martin, P.D. and Cygler, M., Proteins, 17 (1993) 252.Google Scholar
  23. 15 c.
    Maryanoff, B.E., Qiu, X., Padmanabhan, K.P., Tulinsky, A., Almond, H.R., Andrade-Gordon, P., Greco, M.N., Kauffman, J.A., Nicolaou, K.C., Liu, A., Brungs, P.H. and Fusetani, N., Proc. Natl. Acad. Sci. USA, 90 (1993) 8048.Google Scholar
  24. 15 d.
    Mathews, I.I., Padmanabhan, K.P., Ganesh, V., Tulinsky, A., Ishii, M., Chen, J., Turck, C.W., Coughlin, S.R. and Fenton, J.W., Biochemistry, 33 (1994) 3266.Google Scholar
  25. 15 e.
    Weber, P.C., Lee, S.-L., Lewandowski, F.A., Schadt, M.C., Chang, C.H. and Kettner, C.A., Biochemistry, 34 (1995) 3750.Google Scholar
  26. 15 f.
    Tabernero, L., Chang, C.Y., Ohringer, S.L., Lau, W.F., Iwanowicz, E.J., Han, W.C., Wang, T.C., Seiler, S.M., Roberts, D.G.M. and Sack, J.S., J. Mol. Biol., 246 (1995) 14.Google Scholar
  27. 16.
    Bode, W. and Huber, R., Eur. J. Biochem., 204 (1992) 433.Google Scholar
  28. 17.
    Bode, W. and Huber, R., Curr. Opin. Struct. Biol., 1 (1991) 45.Google Scholar
  29. 18.
    Hubbard, S.J., Campbell, S.F. and Thornton, J.M., J. Mol. Biol., 220 (1991) 507.Google Scholar
  30. 19.
    Daggett, V., Schröder, S. and Kollman, P.A., J. Am. Chem. Soc., 113 (1991) 8926.Google Scholar
  31. 20.
    Bemis, G.W., Carlson-Golab, G. and Katzenellenbogen, J.A., J. Am. Chem. Soc., 114 (1992) 570.Google Scholar
  32. 21.
    Miranker, A. and Karplus, M., Proteins, 11 (1991) 29.Google Scholar
  33. 22.
    Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36 (1993) 2142.Google Scholar
  34. 23.
    Miranker, A. and Karplus, M., Proteins, 23 (1995) 472.Google Scholar
  35. 24.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.Google Scholar
  36. 25.
    QUANTA/CHARMm, v. 3.2, Polygen Corp., Waltham, MA, 1991.Google Scholar
  37. 26.
    Janin, J. and Chothia, C., J. Mol. Biol., 100 (1976) 197.Google Scholar
  38. 27.
    Huber, R. and Bode, W., Acc. Chem. Res., 11 (1978) 114.Google Scholar
  39. 28.
    Kikumoto, R., Tamao, Y., Tezuka, T., Tonomura, S., Hara, H., Ninomiya, K., Hijikata, A. and Okamoto, S., Biochemistry, 23 (1984) 85.Google Scholar
  40. 29.
    Hijikata, A. and Okamoto, S., Semin. Thromb. Hemost., 18 (1992) 135.Google Scholar
  41. 30.
    Grootenhuis, P.D.J. and Van, Helden, S.P., In Wipff, G. (Ed.) Computational Approaches in Supramolecular Chemistry, Kluwer, Dordrecht, 1994, pp. 137–149.Google Scholar
  42. 31.
    Di, Cera, E., Guinto, E.R., Vindigni, A., Dang, Q.C., Ayala, Y.M., Wuyi, M. and Tulinsky, A., J. Biol. Chem., 270 (1995) 22089.Google Scholar
  43. 32.
    Cheng, L., Goodwin, C.A., Schully, M.F., Kakkar, V.V. and Claeson, G., J. Med. Chem., 35 (1992) 3364.Google Scholar
  44. 33.
    Jetten, M., Peters, C.A.M., Visser, A., Grootenhuis, P.D.J., Van, Nispen, J.W. and Ottenheijm, H.J.C., Bioorg. Med. Chem., 3 (1995) 1099.Google Scholar
  45. 34.
    For a recent example, see Deadman, J.J., Elgendy, S., Goodwin, C.A., Green, D., Baban, J.A., Patel, G., Skordalakes, E., Chino, N., Claeson, G., Kakkar, V.V. and Scully, M.F., J. Med. Chem., 38 (1995) 1511.Google Scholar
  46. 35.
    Cabani, S., Gianni, P., Mollica, V. and Lepori, L., J. Solut. Chem., 10 (1981) 563.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Peter D. J. Grootenhuis
    • 1
  • Martin Karplus
    • 2
  1. 1.Department of Computational Medicinal ChemistryN.V. OrganonOssThe Netherlands
  2. 2.Department of ChemistryHarvard UniversityCambridgeU.S.A.

Personalised recommendations