Skip to main content
Log in

The myosin filament XV assembly: contributions of 195 residue segments of the myosin rod and the eight C-terminal residues

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

A mixture of two peptides of approximately Mr 13 000 has been isolated from a papain digest of LC2 deficient myosin. The peptides assemble into highly ordered aggregates which in one view are made up of strands of pairs of dots with an average side to side spacing of 13.0 nm and an average axial repeat of 9.0 nm. In another view there are strands of single dots with a side-to-side spacing of 7.8 nm and an axial repeat of 9.1 nm. From N-terminal peptide sequencing, the two peptides have been shown to come from regions of the myosin rod displaced by 195 residues. We have shown that either peptide alone can assemble to form the same aggregates. The 195 residue displacement of the Mr 13 000 peptides corresponds closely to the 196 residue repeat of charges along the myosin rod. This finding permits us to designate 195 residue segments of the myosin rod and to relate assembly characteristics directly to the similar 195 residue segments and 196 residue charge repeat. The most C-terminal 195 residue segment carries information for assembly into helical strands. The contiguous 195 residue segment, in major part, carries information for the unipolar assembly, characteristic of the assembly in each half of the myosin filament. The next contiguous 195 residue segment, in major part, carries information for bipolar assembly which is characteristic of the bare zone region of the filament; and for the transition from the bipolar bare zone to unipolar assembly. The effect of the eight C-terminal residues of the myosin rod on the assembly of the contiguous 195 residues has also been studied. The entire fragment of 195 + eight C-terminal residues assembled to form helical strands with an axial repeat of 30 nm. Successive deletion of charged residues changed the axial repeat of the helical strands suggesting that the charged residues at the C-terminus are involved in determining the pitch in the helical assembly of the contiguous 195 residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASHTON, F. T., WEISEL, J. & PEPE, F. A. (1992) The myosin filament XIV. Backbone structure. Biophys. J. 61, 1513–28.

    Google Scholar 

  • ATKINSON, S. J. & STEWART, M. (1991) Expression in Escherichia Coli of fragments of the coiled-coil rod domain myosin: influence of different regions of the molecule on aggregation and paracrystal formation. J. Cell Sci. 99, 823–36.

    Google Scholar 

  • BENNETT, P. M. (1981) The structure of spindle-shaped paracrystals of light meromysin. J. Mol. Biol. 146, 201–21.

    Google Scholar 

  • CANTINO, M. & SQUIRE, J. M. (1986) Resting myosin crossbridge configuration in frog muscle thick filaments. J. Cell Biol. 102, 610–18.

    Google Scholar 

  • CASPAR, D. L. D., COHEN, C. & LONGLEY, W. (1969) Tropomyosin: crystal structure, polymorphism and molecular interactions. J. Mol. Biol. 41, 87–107.

    Google Scholar 

  • CHOWRASHI, P. K. & PEPE, F. A. (1977) Light meromyosin paracrystal formation. J. Cell Biol. 74, 136–52.

    Google Scholar 

  • CHOWRASHI, P. K. & PEPE, F. A. (1986) The myosin filament XII. Effect of magnesium ATP on assembly. J. Muscle Res. Cell Motil. 7, 413–20.

    Google Scholar 

  • CHOWRASHI, P. K. & PEPE, F. A. (1989) The myosin filament XIII. The sensitivity of LMM assembly to MgATP. Biochim. Biophys. Acta 997, 182–7.

    Google Scholar 

  • CHOWRASHI, P. K., PEMRICK, S. M. & PEPE, F. A. (1989) LC2 involvement in the assembly of skeletal myosin filaments. Biochim. Biophys. Acta 990, 216–23.

    Google Scholar 

  • GERGELY, J. (1953) Studies on myosin-adenosinetriphosphatase. J. Biol. Chem. 200, 543.

    Google Scholar 

  • HANADA, K., TAMAI, M., MORIMOTO, S., ADACHI, T., OHMURA, S., SAWADA, J. & TANAKA, I. (1978) Inhibitory activities of E64 derivatives of papain. Agr. Biol. Chem. 42, 537–41.

    Google Scholar 

  • HUNKAPILLAR, M. (1983) Isolation of microgram quantities of protein from polyacrylamide gels for amino acid sequence analysis. Meth. in Enzymol. 91, 227.

    Google Scholar 

  • HUXLEY, H. E. (1963) Electron microscope studies of the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7, 281–308.

    Google Scholar 

  • HUXLEY, H. E. & BROWN, W. (1967) The low angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. Mol. Biol. 30, 383–434.

    Google Scholar 

  • IP, W. & HEUSER, J. (1983) Direct visualization of the myosin crossbridge lattice on relaxed rabbit psoas thick filaments. J. Mol. Biol. 171, 105–9.

    Google Scholar 

  • LOWEY, S., SLAYTER, H. S., WEEDS, A. G. & BAKER, H. (1969) Substructure of the myosin molecule. I. Sub-fragments of myosin by enzymic degradation. J. Mol. Biol. 42, 1–29.

    Google Scholar 

  • MCLACHLAN, A. D. & KARN, J. (1983) Periodic features of the amino-acid sequence of nematode myosin rod. J. Mol. Biol. 164, 605–26.

    Google Scholar 

  • MIHALYI, E. & SZENT-GYORGYI, A. G. (1953) Trypsin digestion of muscle proteins. I. Ultracentrifugal analysis of the process. J. Biol. Chem. 201, 189.

    Google Scholar 

  • MOLINA, M. I., KROPT, K. L., GULICK, J. & ROBBINS, J. (1987) The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J. Biol. Chem. 262, 6478–88.

    Google Scholar 

  • MORIMOTO, K. & HARRINGTON, W. F. (1973) Isolation and composition of thick filaments from rabbit skeletal muscle. J. Mol. Biol. 77, 165–75.

    Google Scholar 

  • NYITRAY, L., MOCZ, G., SZILAGYI, L., BALINT, M., LU, R. C., WONG, A. & GERGELY, J. (1983) The proteolytic substructure of light meromyosin. Localization of a region responsible for the low ionic strength insolubility of myosin. J. Biol. Chem. 258, 13213–20.

    Google Scholar 

  • OFFER, G. (1972) C-protein and the periodicity in the thick filaments of vertebrate skeletal muscle. Cold Spring Harbor Symp. Quant. Biol. 37, 87–93.

    Google Scholar 

  • PEMRICK, S. M. (1977) Comparison of the calcium sensitivity of actomyosin from native and LC2 deficient myosin. Biochemistry 16, 4047–54.

    Google Scholar 

  • PEPE, F. A. (1967) The myosin filament I. Structural organization from antibody staining observed in electron microscopy. J. Mol. Biol. 27, 203–25.

    Google Scholar 

  • PEPE, F. A. (1972) The myosin filament. Immunohistochemical and ultrastructural approaches to molecular organization. Cold Spring Harbor Symp. Quant. Biol. 37, 97–108.

    Google Scholar 

  • PEPE, F. A. (1983) Macromolecular assembly of myosin. In Muscle and Nonmuscle Motility Vol. 1 (edited by STRACHER, A.) pp. 105–49. New York: Academic Press.

    Google Scholar 

  • PEPE, F. A. & DRUCKER, B. (1975) The myosin filament III. C-protein. J. Mol. Biol. 99, 609–17.

    Google Scholar 

  • PEPE, F. A., DRUCKER, B. & CHOWRASHI, P. K. (1986) The myosin filament XI. Filament assembly. Prep. Biochem. 16, 99–132.

    Google Scholar 

  • SAFER, D. & PEPE, F. A. (1980) Axial packing in light meromyosin paracrystals. J. Mol. Biol. 136, 343–58.

    Google Scholar 

  • SANGER, F., NICKLEN, S. & COULSON, A. R. (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–7.

    Google Scholar 

  • SNOUWAERT, J. N., JAMBOU, R. C., SKONLER, J. E., EARN-HARDT, K., STEBBINS, J. R. & FOWLKES, D. M. (1989) Development of a vector system for the expression of bioengineered proteins. Clin. Chem. 35, B7–12.

    Google Scholar 

  • STEDMAN, H. H., BROWNING, K., OLIVER, N., ORONZISCOTT, M., FISCHBECK, K., SARKAR, S., SYLVESTER, J. E., SCHMICKEL, R. D. & WANG, K. (1988) Nebulin cDNA's detect a 25-kilobase transcript in skeletal muscle and localize to human chromosome 2. Genomics 2, 1–7.

    Google Scholar 

  • STEDMAN, H. H., ELLER, M., JULLIAN, E. H., FERTELS, S. H., SARKAR, S., SYLVESTER, J. E., KELLY, A. M. & RUBINSTEIN, N. A. (1990) The human embryonic myosin heavy chain. Complete primary structure reveals evolutionary relationships with other developmental isoforms. J. Biol. Chem. 265, 3568–76.

    Google Scholar 

  • STEWART, M. & KENSLER, R. W. (1986) Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J. Mol. Biol. 192, 831–51.

    Google Scholar 

  • STEWART, M., PEPE, F. A. & CHOWRASHI, P. K. (1980) Structure of light meromyosin paracrystals. Micron. 11, 387–8.

    Google Scholar 

  • STRAUSS, M., SOHN, R., VIKSTROM, K., SZENT-GYORGYI, A. & LEINWAND, L. (1994) Twenty-nine amino acids of the sarcomeric myosin rod are both necessary and sufficient for filament formation. Mol. Biol. Cell 5, 404a.

    Google Scholar 

  • STREHLER, E. E., STREHLER-PAGE, M. A., PERRIARD, J-C., PERIASAMY, M. & NADAL-GINARD, B. (1986) Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron dependent evolution of the rod. J. Mol. Biol. 190, 291–317.

    Google Scholar 

  • STRZELECIKA-GOLASZEWSKA, H., NYITRAY, L. & BALINT, M. (1985) Paracrystalline assemblies of light meromyosins with various chain weights. J. Muscle Res. Cell Motil. 6, 641–58.

    Google Scholar 

  • SZENT-GYOGRYI, A. G., COHEN, C. & PHILPOT, D. E. (1960) Light meromyosin fraction I. A helical molecule from myosin. J. Mol. Biol. 2, 133–42.

    Google Scholar 

  • VARRANO-MARSTEN, E. C., FRANZINI-ARMSTRONG, C. & HASELGROVE, J. C. (1984) The structure and disposition of cross bridges on deep-etched fish muscle. J. Muscle Res. Cell Motil. 5, 363–83.

    Google Scholar 

  • WARD, R. & BENNETT, P. M. (1989) Paracrystals of myosin rod. J. Muscle Res. Cell Motil. 10, 34–52.

    Google Scholar 

  • WEEDS, A. G. & POPE, B. (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptability. J. Mol. Biol. 111, 129–57.

    Google Scholar 

  • YAGI, N., DICKENS, M. J., BENNETT, P. M. & OFFER, G. (1981) Electron diffraction and X-ray diffraction of a hexagonal net of light meromyosin. J. Mol. Biol. 149, 787–803.

    Google Scholar 

  • YOUNG, M., KING, M. V., O'HARA, D. S. & MOLBERG, P. J. (1972) Studies on the structure and assembly pattern of the light meromyosin section of the myosin rod. Cold Spring Harbor Symp. Quant. Biol. 37, 65–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowrashi, P.K., Pemrick, S.M., Li, S. et al. The myosin filament XV assembly: contributions of 195 residue segments of the myosin rod and the eight C-terminal residues. J Muscle Res Cell Motil 17, 555–573 (1996). https://doi.org/10.1007/BF00124355

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124355

Keywords

Navigation