Skip to main content
Log in

π-SCF-Molecular Mechanics PIMM: Formulation, parameters, applications

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A π-SCF/Molecular Mechanics method (PIMM) for the calculation of heats of formation, molecular geometries and charge density distributions of organic molecules is described. The method combines a π-SCF molecular orbital calculation and the σ-charge evaluation procedure PEOE of Marsilli and Gasteiger with molecular mechanics. The formulas and parameters use are given. A series of results for small molecules is presented and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See any modern textbook in Organic Chemistry; Lindner H.J., Naturwissenschaften, 61 (1977) 177.

    Google Scholar 

  2. Náray-Szabó G., Surján P.R. and Angyán J.G., Applied Quantum Chemistry, D. Reidel Publishing Company, Dordrecht, 1987; Ahlrichs, R., Nachr. Chem. Tech. Lab., 36 (1988) 738.

    Google Scholar 

  3. Allinger N.L., Adv. Phys. Org. Chem., 13 (1976) 1; Burkert, U. and Allinger, N.L., Molecular Mechanics, American Chemical Society, Washington, DC, 1982.

    Google Scholar 

  4. Powell R.E., J. Chem. Educ., 45 (1968) 558, 790.

    Google Scholar 

  5. Brickmann J., J. Spectrosc., 7 (1986) 1.

    Google Scholar 

  6. Lindner H.J., Tetrahedron, 30 (1974) 1127.

    Google Scholar 

  7. Lindner, H.J., Tetrahedron Lett. (1974) 2479; Tetrahedron, 31 (1975) 281; Tetrahedron, 32 (1976) 753; Tetrahedron, 37 (1981) 535; Lindner, H.J., Hafner, K., Roemer, M. and Kitschke, B., Liebigs Ann. Chem., (1975) 731; Dönges, R., Hafner, K. and Lindner, H.J., Tetrahedron Lett., (1975) 1345; Kessler, H., Ott, W., Lindner, H.J., Schnering, H.G.v., Peters, E.-M. and Peters, K., Chem. Ber., 113 (1980) 90; Stegemann, J. and Lindner, H.J., Acta Crystallogr., B35 (1979) 2161; B36 (1980) 2363; Gleiter, R., Haider, R., Bischof, P. and Lindner, H.J., Chem. Ber., 116 (1983) 3736; Hafner, K., Knaup, G.L., Lindner, H.J. and Flöter, H.-C., Angew. Chem., 97 (1985) 209, 213; Wentrup, C., Mayor, C., Becker, J. and Lindner, H.J., Tetrahedron, 41 (1985) 1601; Hafner, K., Knaup, G.L. and Lindner, H.J., Angew. Chem., 98 (1986) 650.

  8. Lindner H.J., in Gasteiger J. (Ed.) Software-Entwicklung in der Chemie, Springer-Verlag, Berlin, Heidelberg, 1987, pp 35–41.

    Google Scholar 

  9. Gasteiger J. and Marsilli M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  10. Smith, A.E., Dissertation, Technische Hochschule Darmstadt, 1989.

  11. Egert, E., Universität Frankfurt, Private communication; Program MOMO; Beck, H., Dissertation, Göttingen, 1989.

  12. Pariser R. and Parr R.G., J. Chem. Phys., 21 (1953) 466, 767; Pople, J.A., Trans. Faraday Soc., 49 (1953) 1375.

    Google Scholar 

  13. Roothaan C.C., Rev. Mod. Phys., 23 (1951) 69; Hall, G.G., Proc. R. Soc. London, A208 (1951) 328.

    Google Scholar 

  14. Parr R.G., J. Chem. Phys., 20 (1952) 1499.

    Google Scholar 

  15. Hinze J. and Jaffé H.H., J. Am. Chem. Soc., 84 (1962) 540.

    Google Scholar 

  16. Parr R.G. and Snyder L.C., J. Chem. Phys., 34 (1961) 1661.

    Google Scholar 

  17. Dewar M.J.S. and Hojvat N.L., J. Chem. Phys., 34 (1961) 1232; Ohno, K., Theor. Chim. Acta 2 (1964) 219.

    Google Scholar 

  18. Mulliken R.S., J. Chem. Phys., 46 (1949) 675; J. Phys. Chem., 56 (1952) 295.

    Google Scholar 

  19. Slater J.C., Phys. Rev., 36 (1930) 57.

    Google Scholar 

  20. Dewar M.J.S. and Morita T., J. Am. Chem. Soc., 91 (1969) 796.

    Google Scholar 

  21. Warshel A. and Lappicirella A., J. Am. Chem. Soc., 103 (1981) 4664.

    Google Scholar 

  22. Heilbronner E. and Bock H., Das HMO-Modell und seine Anwendung, Vol. 1, Verlag Chemie, Weinheim, 1968, p. 155.

    Google Scholar 

  23. Carnahan B., Luther H.A. and Wilkes J.O., Applied Numerical Methods, Wiley, New York, 1969.

    Google Scholar 

  24. Del Re, G., J. Chem. Soc., (1958) 4031.

  25. Mulliken R.S., J. Chem. Phys., 2 (1934) 782; 3 (1935) 573.

    Google Scholar 

  26. Pauling L., The Nature of the Chemical Bond, Cornell, Ithaca, New York, 1960; for a current treatise see also: Sen K.D. and Jorgensen C.K., (Eds.) Structure and Bonding, Vol. 66 (Electronegativity), Springer-Verlag Berlin, 1987.

    Google Scholar 

  27. Dewar M.J.S. and Schmeising H.N., Tetrahedron, 5 (1959) 166; 11 (1960) 96; Rademacher, P., Strukturen organischer Moleküle, In Klessinger M. (Ed.), Physikalische Organische Chemie, Vol. 2, VCH, Weinheim, New York, 1987.

    Google Scholar 

  28. Dewar M.J.S. and De LLano C., J. Am. Chem. Soc., 91 (1969) 789.

    Google Scholar 

  29. Warshel A. and Levitt M., J. Mol. Biol., 103 (1976) 227.

    Google Scholar 

  30. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Sonaminathan S. and Karplus M., J. Comp. Chem., 4 (1983) 187.

    Google Scholar 

  31. Engler E.M., Andose J.D., Schleyer P.v.R., J. Am. Chem. Soc., 95 (1973) 8005.

    Google Scholar 

  32. Giglio E., Nature (Lond.), 222 (1969) 339.

    Google Scholar 

  33. Kroeker, M. and Lindner, H.J., work currently in progress, Technische Hochschule Darmstadt.

  34. Mohammad S.N. and Hopfinger A.J., Int. J. Quantum Chem., 22 (1982) 1189.

    Google Scholar 

  35. Hagler A.T., Huler E. and Lifson S., J. Am. Chem. Soc., 96 (1974) 5319.

    Google Scholar 

  36. Leroy G., Adv. Quant. Chem., 17 (1985) 1.

    Google Scholar 

  37. Cox J.D. and Pilcher G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.

    Google Scholar 

  38. Murtagh B.A. and Sargent R.W.H., Computer J., 13 (1970) 185.

    Google Scholar 

  39. Benson, S.W., Cruickshank, F.R., Golden, D.M., Haugen, G.R., O'Neal, H.E., Rodgers, A.S., Shaw, R. and Walsh, R., Additivity rules for the estimation of thermochemical properties, Chem. Rev., (1969) 279.

  40. West R.C. (Ed.), CRC Handbook of Chemistry and Physics, 56th edn., CRC Press, Inc., Cleveland, OH, 1975–1976.

    Google Scholar 

  41. Motherwell W.D.S. and Clegg W., PLUTO, Program for Plotting Crystal and Molecular Structures, University of Cambridge, U.K., 1978.

    Google Scholar 

  42. Brickmann, J. and co-workers, MOLCAD, Technische Hochschule Darmstadt, 1987.

  43. Dewar M.J.S. and Harget A.J., Proc. R. Soc. London, A 315 (1970) 443, 457.

    Google Scholar 

  44. Dewar M.J.S., Lo D.H. and Ramsden C.A., J. Am. Chem. Soc., 97 (1975) 1311.

    Google Scholar 

  45. Pople J.A. and Beveridge D.L., Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.

    Google Scholar 

  46. Corrected for single conformation following: Engler, E.M., Andose, J.D. and Schleyer, P.v.R., (1973) (Ref.[31]).

  47. Hansen A.W. and Röhrl M., Acta Crystallogr., B 28 (1972) 2032.

    Google Scholar 

  48. Boyd R.H., Sanwal S.N., Shary-Tehrany S. and McNally D., J. Phys. Chem., 75 (1971) 1264.

    Google Scholar 

  49. Pedley, J.D. and Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, 1977 (taken from: Leroy (1985); see our Ref. [36]).

  50. Furukawa J.I., Sakiyama M., Seki S., Saito Y. and Kusano K., Bull. Chem. Soc. Jpn., 55 (1982) 3329.

    Google Scholar 

  51. ΔHf 298 from the heats of combustion in: Zimmermann H. and Geisenfelder H., Z. Elektrochem., 65 (1961) 368.

    Google Scholar 

  52. McCormick D.G. and Hamilton W.S., J. Chem. Thermodyn., 10 (1978) 275.

    Google Scholar 

  53. Derissen J.L., J. Mol. Struct., 7 (1971) 67.

    Google Scholar 

  54. Perricaudet M. and Pullman A., Int. J. Pept. Prot. Res., 5 (1973) 99; for a theoretical treatment see also: Allinger, N.L. and Chang, S.H.M., Tetrahedron, 33 (1977) 1561.

    Google Scholar 

  55. Subrahmanyan S.V. and Piercy J.E., J. Acoust. Soc. Am., 37 (1965) 340.

    Google Scholar 

  56. Bailey J. and North A.M., Trans. Faraday Soc., 64 (1968) 1499.

    Google Scholar 

  57. George W.O., Hassid D.V. and Maddams W.F., J. Chem. Soc., Perkin Trans. 2 (1973) 952.

    Google Scholar 

  58. Nakanishi H., Fujita H. and Yamamoto O., Bull. Chem. Soc. Jpn., 51 (1978) 214.

    Google Scholar 

  59. Oki M. and Nakanishi H., Bull. Chem. Soc. Jpn., 43 (1970) 2558.

    Google Scholar 

  60. Drakenberg T. and Forsén S., J. Phys. Chem., 74 (1974) 1.

    Google Scholar 

  61. GáspárJr. R. and Gáspár R., Int. J. Quantum Chem., 24 (1983) 767.

    Google Scholar 

  62. Drakenberg, T. and Forsén, S., J. Chem. Soc., Chem. Commun., (1971) 1404.

  63. Jorgensen W.L. and Swenson C.J., J. Am. Chem. Soc., 107 (1985) 569.

    Google Scholar 

  64. Adams J.W., Geise H.J. and Bartell L.S., J. Am. Chem. Soc., 92 (1970) 5013.

    Google Scholar 

  65. Oberhammer H. and Bauer S.H., J. Am. Chem. Soc., 91 (1969) 10.

    Google Scholar 

  66. Traetteberg M., Acta Chem. Scand., 20 (1966) 1724.

    Google Scholar 

  67. Bordner J., Parker R.G. and StanfordJr. R.H., Acta Crystallogr., B 28 (1972) 1069.

    Google Scholar 

  68. Chiang J.F. and Bauer S.H., J. Am. Chem. Soc., 92 (1970) 261.

    Google Scholar 

  69. Beagley B. and Hewitt T.G., Trans. Faraday Soc., 64 (1968) 2561.

    Google Scholar 

  70. Larsen N.W., J. Mol. Struct., 51 (1979) 175.

    Google Scholar 

  71. Lister D.G., Tyler J.K., Hoeg J.H. and Larsen W., J. Mol. Struct., 23 (1974) 253.

    Google Scholar 

  72. Banerjee A., Acta Crystallogr., B 29 (1973) 2070.

    Google Scholar 

  73. Lahiri B.N., Acta Crystallogr., A 25 (1969) 127.

    Google Scholar 

  74. Kitano M. and Kuchitsu K., Bull. Chem. Soc. Jpn., 46 (1973) 3048.

    Google Scholar 

  75. Ottersen T. and Almlöf J., Acta Crystallogr., B 36 (1980) 1147.

    Google Scholar 

  76. Sugie M. and Kuchitsu K., J. Mol. Struct., 20 (1974) 437.

    Google Scholar 

  77. Kitano M., Fukuyama T. and Kuchitsu K., Bull. Chem. Soc. Jpn., 46 (1973) 384.

    Google Scholar 

  78. Iley R.C. and Davis M.I., J. Chem. Phys., 57 (1972) 1909.

    Google Scholar 

  79. Laurie V.W., J. Chem. Phys., 34 (1961) 291.

    Google Scholar 

  80. Sadova N.I., Vilkov L.V. and Anfimova T.M., Zh. Strukt. Khim., 13 (1972) 763.

    Google Scholar 

  81. Soerensen G.O., mahler L. and Rastrup-Andersen N., J. Mol. Struct., 20 (1974) 119.

    Google Scholar 

  82. Werner W., Dreizler H. and Rudolph H.D., Z. Naturforsch., 22a (1967) 531.

    Google Scholar 

  83. Stiefvater O.L., J. Chem. Phys., 63 (1975) 2560.

    Google Scholar 

  84. Nygaard L., Amussen E., Hoeg J.H., Maheshwari R.C., Nielsen C.H., Petersen I.B., Rastrup-Andersen J. and Soerensen G.O., J. Mol. Struct., 8 (1971) 225; 9 (1971) 220.

    Google Scholar 

  85. Nasibullin R.S., Latypova R.G., Troitskaya V.S., Vinokurov V.G. and Pozdeev N.M., Zh. Strukt. Khim., 15 (1974) 47.

    Google Scholar 

  86. Nygaard L., Christen D., Nielsen J.T., Pedersen E.J., Snerling O., Vestergaard E. and Soerensen G.O., J. Mol. Struct., 22 (1974) 401.

    Google Scholar 

  87. Baron P.A., Brown R.D., Burden F.R., Domaille P.J. and Kent J.E., J. Mol. Spectrosc., 43 (1972) 401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.E., Lindner, H.J. π-SCF-Molecular Mechanics PIMM: Formulation, parameters, applications. J Computer-Aided Mol Des 5, 235–262 (1991). https://doi.org/10.1007/BF00124341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124341

Key words

Navigation