Skip to main content
Log in

Molecular dynamics simulation of the renin inhibitor H142 in water

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

H142 is a synthetic decapeptide designed to inhibit renin, an enzyme acting in the regulation of blood pressure. The inhibiting effect of H142 is caused by a reduction of a-Leu-Val-peptide bond (i. e. C(=O)-NH→CH2-NH). The conformational and dynamical properties of H142 and its unreduced counterpart (H142n) was modelled by means of molecular dynamics simulations. Water was either included explicitly in the simulations or as a dielectric continuum. When water molecules surround the peptides, they remain in a more or less extended conformation through the simulation. If water is replaced by a dielectric continuum, the peptides undergo a conformational change from an extended to a folded state. It is not clear whether this difference is a consequence of a too short simulation time for the water simulations, a force-field artifact promoting extended conformations, or if the extended conformation represents the true conformational state of the peptide. A number of dynamic properties were evaluated as well, such as overall rotation, translational diffusion, side-chain dynamics and hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foundling, S.I., Cooper, J., Watson, F.E., Pearl, L.H., Hemmings, A., Wood, S.P., Blundell, T., Hallett, A., Jones, D.M., Suciras, J., Atrash, B. and Szelke, M., J. Cardiovasc. Pharmacol., 10(7) (1987) S59.

    Google Scholar 

  2. Van Gunsteren W.F. and Karplus M., Biochemistry, 21 (1982) 2259.

    Google Scholar 

  3. Van Gunsteren W.F. and Berendsen H.J.C., J. Mol. Biol., 176 (1984) 559.

    Google Scholar 

  4. Wong C.F. and McCammon A., Isr. J. Chem., 27 (1986) 211.

    Google Scholar 

  5. Levitt M. and Sharon R., Proc. Natl. Acad. Sci. USA, 85 (1988) 7557.

    Google Scholar 

  6. Ahlström P., Teleman O., Kördel C.-J., Forsén S. and Jönsson B., Biochemistry, 28 (1989) 3205.

    Google Scholar 

  7. Rossky P.J. and Karplus M., J. Am. Chem. Soc., 101 (1979) 1913.

    Google Scholar 

  8. Brady J. and Karplus M., J. Am. Chem. Soc., 107 (1985) 6103.

    Google Scholar 

  9. Hagler A.T., Osguthorpe D.J., Dauber-Osguthorpe P. and Hempel J.C., Science, 227 (1985) 1309.

    Google Scholar 

  10. Hagler A.T., Peptides, 7 (1985) 213.

    Google Scholar 

  11. Hagler A.T., Strutters R.S., Solmajer T.J., Campbell K.B., Tanaka G. and Rivier J., Pharmacochem. Libr., 10 (QSAR Drug Des. Toxicol.) (1987) 231.

    Google Scholar 

  12. Kitson D.H. and Hagler A.T., Biochemistry, 27 (1988) 5246.

    Google Scholar 

  13. Anderson A., Carson M. and Hermans J., Ann. NY Acad. Sci., 482 (1986) 51.

    Google Scholar 

  14. Ahlström P., Teleman O., Jönsson B. and Forsén S., J. Am. Chem. Soc., 109 (1987) 1541.

    Google Scholar 

  15. Teleman, O., Ahlström, P. and Jönsson, B., Mol. Simul., (1990) in press.

  16. Hermans J., Berendsen H.J.C., Van Gunsteren W.F. and Postma J.P.M., Biopolymers, 23 (1984) 1513.

    Google Scholar 

  17. Van Gunsteren W.F. and Karplus M., Macromolecules, 15 (1982) 1528.

    Google Scholar 

  18. Margenau M. and Kestner N.R., Theory of Intermolecular Forces, Pergamon, New York, 1969.

    Google Scholar 

  19. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F. and Hermans J., In Pullman B. (Ed.) Intermolecular Forces, D. Reidel, Dordrecht, 1981, pp. 331–342.

    Google Scholar 

  20. Teleman O., Jönsson B. and Engström S., Mol. Phys., 60 (1987) 193.

    Google Scholar 

  21. Dolphin D. and Wick A.E., Tabulation of Infrared Data, Wiley Interscience, New York, 1977.

    Google Scholar 

  22. Herzberg G., Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945.

    Google Scholar 

  23. Teleman O. and Jönsson B., J. Comp. Chem., 7 (1986) 58.

    Google Scholar 

  24. Wallqvist, A. and Teleman, O., Mol. Phys., (1990) in press.

  25. Teleman, O., Jönsson, B. and Svensson, B., Comp. Phys. Comm., (1990) in press.

  26. Linse S., Drakenberg T. and Teleman O., Biochemistry, 29 (1990) 5925.

    Google Scholar 

  27. Egberts, E., Doctoral thesis, Groningen University, 1988.

  28. Jönsson B., Edholm O. and Teleman O., J. Chem. Phys., 85 (1986) 2259.

    Google Scholar 

  29. Watanabe K., Ferrario M. and Klein M., J. Phys. Chem., 92 (1988) 819.

    Google Scholar 

  30. Braun W. and Gō N., J. Mol. Biol., 186 (1985) 611.

    Google Scholar 

  31. Havel T. F., Kuntz I. D. and Crippen G. M., Bull. Math. Biol., 45 (1983) 665.

    Google Scholar 

  32. De Vlieg J., Boelens R., Scheek R. M., Kaptein R. and Van Gunsteren W. F., Isr. J. Chem., 27 (1986) 181.

    Google Scholar 

  33. Nilges M., Gronenborn A.M., Brünger A.T. and Clore G.M., Prot. Eng., 2 (1988) 27.

    Google Scholar 

  34. Teleman O., J. Comp. Chem., 11 (1990) 64.

    Google Scholar 

  35. Teleman O. and v.d. Lieth C.-W., Biopolymers, 30 (1990) 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teleman, O., Lindberg, M. & Engström, S. Molecular dynamics simulation of the renin inhibitor H142 in water. J Computer-Aided Mol Des 5, 187–203 (1991). https://doi.org/10.1007/BF00124338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124338

Key words

Navigation