Skip to main content
Log in

Generalized perfect arrays and menon difference sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Given an s 1 × ... × s rinteger-valued array A and a (0, 1) vector z = (z 1, ..., z r), form the array A′ from A by recursively adjoining a negative copy of the current array for each dimension i where z i = 1. A is a generalized perfect array type z if all periodic autocorrelation coefficients of A′ are zero, except for shifts (u 1, ..., u r) where u i, - 0 (mod s i) for all i. The array is perfect if z = (0, ..., 0) and binary if the array elements are all ±1. A nontrivial perfect binary array (PBA) is equivalent to a Menon difference set in an abelian group.

Using only elementary techniques, we prove various construction theorems for generalized perfect arrays and establish conditions on their existence. We show that a generalized PBA whose type is not (0, ..., 0) is equivalent to a relative difference set in an abelian factor group. We recursively construct several infinite families of generalized PBAs, and deduce nonexistence results for generalized PBAs whose type is not (0, ..., 0) from well-known nonexistence results for PBAs. A central result is that a PBA with 22y32u elements and no dimension divisible by 9 exists if and only if no dimension is divisible by 2y+2. The results presented here include and enlarge the set of sizes of all previously known generalized PBAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alquaddoomi and R.A. Scholtz, On the nonexistence of Barker arrays and related matters, IEEE Trans. Inform. Theory vol. 35, pp. 1048–1057, 1989.

    Google Scholar 

  2. M.F.M. Antweiler, L. Bömer, and H.-D. Lüke, Perfect ternary arrays, IEEE Trans. Inform. Theory vol. 36, pp. 696–705, 1990.

    Google Scholar 

  3. K.T. Arasu, Recent results on difference sets, in D. Ray-Chaudhuri, editor, The IMA Volumes in Mathematics and its Applications, Vol. 21: Coding Theory and Design Theory, Springer-Verlag, New York, 1990, pp. 1–23.

    Google Scholar 

  4. K.T. Arasu and J. Reis, On abelian groups of order 64 that have difference sets, Wright State University, Technical Report 1987.10, 1987.

  5. L.D. Baumert, Cyclic Difference Sets, Lecture Notes in Mathematics 182, Springer-Verlag, New York, 1971.

    Google Scholar 

  6. G. Berman, Families of skew-circulant weighing matrices, Ars Combin. vol. 4, pp. 293–307, 1977.

    Google Scholar 

  7. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  8. L. Bömer and M. Antweiler, Perfect binary arrays with 36 elements, Electron. Lett. vol. 23, pp. 730–732, 1987.

    Google Scholar 

  9. L. Bömer and M. Antweiler, Two-dimensional perfect binary arrays with 64 elements, IEEE Trans. Inform. Theory vol. 36, pp. 411–414, 1990.

    Google Scholar 

  10. D. Calabro and J.K. Wolf, On the synthesis of two-dimensional arrays with desirable correlation properties, Inform. Control vol. 11, pp. 537–560, 1968.

    Google Scholar 

  11. W.-K. Chan and M.-K. Siu, Authors' correction to ldSummary of perfect s × t arrays, 1 ≤ st ≤ 100,rd Electron. Lett. vol. 27, p. 1112, 1991.

    Google Scholar 

  12. W.-K. Chan and M.-K. Siu, Summary of perfect s × t arrays, 1 ≤ st ≤ 100, Electron. Lett. vol. 27, pp. 709–710, 1991.

    Google Scholar 

  13. Y.K. Chan, M.K. Siu, and P. Tong, Two-dimensional binary arrays with good autocorrelation, Inform. Control vol. 42, pp. 125–130, 1979.

    Google Scholar 

  14. J.A. Chang, Ternary sequence with zero correlation, Proc. IEEE vol. 55, pp. 1211–1213, 1967.

    Google Scholar 

  15. J. Davis, Difference sets in abelian 2-groups, J. Combin. Theory (A) vol. 57, pp. 262–286, 1991.

    Google Scholar 

  16. J. Davis, Difference sets in abelian 2-groups, Ph.D. thesis, University of Virginia, 1987.

  17. P. Delsarte, J.M. Goethals, and J.J. Seidel, Orthogonal matrices with zero diagonal II, Canad. J. Math. vol. 23, pp. 816–832, 1971.

    Google Scholar 

  18. J.F. Dillon, Difference sets in 2-groups, Contemporary Math. vol. 111, pp. 65–72, 1990.

    Google Scholar 

  19. P. Eades and R.M. Hain, On circulant weighing matrices, Ars Combin. vol. 2, pp. 265–284, 1976.

    Google Scholar 

  20. J.E.H. Elliott and A.T. Butson, Relative difference sets, Illinois J. Math. vol. 10, pp. 517–531, 1966.

    Google Scholar 

  21. E.E. Fenimore and T.M. Cannon, Coded aperture imaging with uniformly redundant arrays, Applied Optics vol. 17, pp. 337–347, 1978.

    Google Scholar 

  22. A.V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York, 1979.

    Google Scholar 

  23. J. Hammer and J.R. Seberry, Higher dimensional orthogonal designs and applications, IEEE Trans. Inform. Theory vol. IT-27, pp. 772–779, 1981.

    Google Scholar 

  24. J.E. Hershey and R. Yarlagadda, Two-dimensional synchronisation, Electron. Lett. vol. 19, pp. 801–803, 1983.

    Google Scholar 

  25. T. Høholdt and J. Justesen, Ternary sequences with perfect periodic autocorrelation, IEEE Trans. Inform. Theory vol. IT-29, pp. 597–600, 1983.

    Google Scholar 

  26. D.R. Hughes and F.C. Piper, Design Theory, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  27. V.P. Ipatov, Ternary sequences with ideal periodic autocorrelation properties, Radio Engng. Electron. Phys. vol. 24, pp. 75–79, 1979.

    Google Scholar 

  28. V.P. Ipatov, Contribution to the theory of sequences with perfect periodic autocorrelation properties, Radio Engng. Electron. Phys. vol. 25, pp. 31–34, 1980.

    Google Scholar 

  29. V.P. Ipatov, V.D. Platonov, and I.M. Samoilov, A new class of ternary sequences with ideal periodic autocorrelation properties, Soviet Math. (Izvestiya VUZ) vol. 27, pp. 57–61, 1983. English translation.

    Google Scholar 

  30. J. Jedwab, Barker arrays I—even number of elements, 1991. Submitted.

  31. J. Jedwab, Nonexistence of perfect binary arrays, Electron. Lett. vol. 27, pp. 1252–1254, 1991.

    Google Scholar 

  32. J. Jedwab, Nonexistence results for Barker arrays, in C. Mitchell, editor The Institute of Mathematics and its Applications Conference Series (New Series) No. 33: Cryptography and Coding II, Oxford University Press, New York, 1992, pp. 121–126.

    Google Scholar 

  33. J. Jedwab, Perfect arrays, Barker arrays and difference sets, Ph.D. thesis, University of London, 1991.

  34. J. Jedwab, S. Lloyd, and M. Mowbray, Barker arrays II—odd number of elements, 1991. Submitted.

  35. J. Jedwab and C. Mitchell, Constructing new perfect binary arrays, Electron. Lett. vol. 24, pp. 650–652, 1988.

    Google Scholar 

  36. J. Jedwab, C. Mitchell, F. Piper, and P. Wild, Perfect binary arrays and difference sets, 1991. Submitted.

  37. J. Jedwab and C.J. Mitchell, Infinite families of quasiperfect and doubly quasiperfect binary arrays, Electron. Lett. vol. 26, pp. 294–295, 1990.

    Google Scholar 

  38. D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math. vol. 34, pp. 257–297, 1982.

    Google Scholar 

  39. L.E. Kopilovich, On perfect binary arrays, Electron. Lett. vol. 24, pp. 566–567, 1988.

    Google Scholar 

  40. R.G. Kraemer, Proof of a conjecture on Hadamard 2-groups. Preprint.

  41. E.S. Lander, Symmetric Designs: An Algebraic Approach. London Mathematical Society Lecture Notes Series 74, Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  42. H.D. Lüke, Sequences and arrays with perfect periodic correlation, IEEE Trans. Aerosp. Electron. Syst. vol. 24, pp. 287–294, 1988.

    Google Scholar 

  43. H.D. Lüke, L. Bömer, and M. Antweiler, Perfect binary arrays, Signal Proc. vol. 17, pp. 69–80, 1989.

    Google Scholar 

  44. F.J. MacWilliams and N.J.A. Sloane, Pseudo-random sequences and arrays, Proc. IEEE vol. 64, pp. 1715–1729, 1976.

    Google Scholar 

  45. S.J. Martin, M.A. Butler, and C.E. Land, Ferroelectric optical image comparator using PLZT thin films, Electron. Lett. vol. 24, pp. 1486–1487, 1988.

    Google Scholar 

  46. D.B. Meisner, Families of Menon difference sets, in Annals of Discrete Mathematics: Proc. Combinatorics '90, Gaeta, Italy, 1990, North-Holland, Amsterdam. In press.

  47. P. Kesava Menon, On difference sets whose parameters satisfy a certain relation, Proc. Amer. Math. Soc. vol. 13, pp. 739–745, 1962.

    Google Scholar 

  48. K. Pasedach and E. Haase, Random and guided generation of coherent two-dimensional codes, Optics Comm. vol. 36, pp. 423–428, 1981.

    Google Scholar 

  49. H.J. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs No. 14, Math. Assoc. Amer., Washington, DC, 1963.

    Google Scholar 

  50. N. Zagaglia Salvi, On the non-existence of certain difference sets, in A. Barlotti, M. Marchi, and G. Tallini, editors, Annals of Discrete Mathematics 37: Proc. Combinatorics '86, Trento, Italy, 1986, North-Holland, Amsterdam, 1988, pp. 479–484.

    Google Scholar 

  51. D. A. Shedd and D.V. Sarwate, Construction of sequences with good correlation properties, IEEE Trans. Inform. Theory vol. IT-25, pp. 94–97, 1979.

    Google Scholar 

  52. G.P. Sillitto, An extension property of a class of balanced incomplete block designs, Biometrika vol. 44, pp. 278–279, 1957.

    Google Scholar 

  53. G.K. Skinner, X-ray imaging with coded masks, Scientific American vol. 259, pp. 66–71, August 1988.

    Google Scholar 

  54. R. Turyn and J. Storer, On binary sequences, Proc. Amer. Math. Soc. vol. 12, pp. 394–399, 1961.

    Google Scholar 

  55. R.J. Turyn, Character sums and difference sets, Pacific J. Math. vol. 15, pp. 319–346, 1965.

    Google Scholar 

  56. R.J. Turyn, Sequences with small correlation, in H.B. Mann, editor, Error Correcting Codes, Wiley, New York, 1968, pp. 195–228.

    Google Scholar 

  57. R.J. Turyn, A special class of Williamson matrices and difference sets, J. Combin. Theory (A) vol. 36, pp. 111–115, 1984.

    Google Scholar 

  58. A. Vincent, Applications of combinatorial designs to the theory of communications, Ph.D. thesis, RHBNC, University of London, 1989.

  59. P. Wild, Infinite families of perfect binary arrays, Electron. Lett. vol. 24, pp. 845–847, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Jungnickel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jedwab, J. Generalized perfect arrays and menon difference sets. Des Codes Crypt 2, 19–68 (1992). https://doi.org/10.1007/BF00124209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124209

Keywords

Navigation