Skip to main content
Log in

Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HanS.Y., SweeneyJ.E., BachmanE.S., SchweigerE.J., ForloniG., CoyleJ.T., DavisB.M. and JoullieM.M., Eur. J. Med. Chem., 27 (1992) 673.

    Google Scholar 

  2. PomponiM., GiardisaB., GattaF. and MartaM., Med. Chem. Res., 2 (1992) 306.

    Google Scholar 

  3. WilsonI.B. and QuanC., Arch. Biochem. Biophys., 73 (1958) 131.

    Google Scholar 

  4. BrimijoinS., HammondP. and RakonezayZ., J. Neurochem., 49 (1987) 555.

    Google Scholar 

  5. SugimotoH., IimuraY., YamanishiY. and YamatsuK., Bioorg. Med. Chem. Lett., 8 (1992) 871.

    Google Scholar 

  6. KozikowskiA.P., MillerC.P., YamadaF., PangY.-P., MillerJ.H., McKinneyM. and BallR.G., J. Med. Chem., 34 (1991) 3399.

    Google Scholar 

  7. HarelM., SchalkI., EhretsabatierL., BouetF., GoeldnerM., HirthC., AxelsenP.H., SilmanI. and SussmanJ.L., Proc. Natl. Acad. Sci. USA, 90 (1993) 9031.

    Google Scholar 

  8. CardozoM.G., KawaiT., IimuraY., SugimotoH., YamanishiY. and HopfingerA.J., J. Med. Chem., 35 (1992) 590.

    Google Scholar 

  9. CardozoM.G., IimuraY., SugimotoH., YamanishiY. and HopfingerA.J., J. Med. Chem., 35 (1992) 584.

    Google Scholar 

  10. SussmanJ.L., HarelM., FrolowF., OefnerC., GoldmanA., TokerL. and SilmanI., Science, 253 (1991) 872.

    Google Scholar 

  11. GubernatorK., AmmannH.J., BrogerC., BurD., DoranD.M., BerberP.R., MullerK. and SchaumannT.M., In WermuthC.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, 1993, pp. 52–58.

    Google Scholar 

  12. PangY.-P. and KozikowskiA.P., J. Comput.-Aided Mol. Design, 8 (1994) 669.

    Google Scholar 

  13. KozikowskiA.P., MaD., PangY.-P., ShumP., LikieV., MishraP.K., MacuraS., BasuA., LazoJ.S. and BallR.G., J. Am. Chem. Soc., 115 (1993) 3957.

    Google Scholar 

  14. BernsteinF.C., KoetzleT.F., WilliamsG.J., MeyerJr.E., BriceM.D., RodgersJ.R., KennardO., ShimanouchiT. and TasumiM., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  15. VillalobosA., BlakeJ.F., BiggersC.K., ButlerT.W., ChapinD.S., ChenY.P.L., IvesJ.L., JonesS.B., ListonD.R., NagelA.A., NasonD.M., NielsenJ.A., ShalabyI.A. and WhiteW.F., J. Med. Chem., 37 (1994) 2721.

    Google Scholar 

  16. SugimotoH., TsuchiyaY., SugumiH., HigurashiK., KaribeN., IimuraY., SasakiA., ArakiS., YamanishiY. and YamatsuK., J. Med. Chem., 35 (1992) 4542.

    Google Scholar 

  17. BurleyS.K. and PotskoG.A., Science, 229 (1985) 23.

    Google Scholar 

  18. HunterC.A. and SandersK.M., J. Am. Chem. Soc., 112 (1990) 5525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, YP., Kozikowski, A.P. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program. J Computer-Aided Mol Des 8, 683–693 (1994). https://doi.org/10.1007/BF00124015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124015

Key words

Navigation