Skip to main content
Log in

Functional analysis of the 3′-terminal sequence of the maize controlling element (Ac) by internal replacement and deletion mutagenesis

  • Research Article
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Using deletion analysis of the Ac transposable element, we have shown that replacement of internal sequences from base pairs 181–3559 does not abolish transposition. We have done sequential deletion analysis of the 3'-end of the Ac element and found that deletion of the major transposase binding sites (AAACGG) abolishes transposition. But, surprisingly, we found a 3'-terminal deletion of the transposase binding sites which also contained a 71-bp internal sequence between base pairs 3559 and 3630 retained transposition ability. This 71-bp internal sequence did not have a transposase (ORFa) binding motif. These data suggest that two different domains may be involved in the minimal sequence necessary for transposition. Finally, we have identified functional prokaryotic promoter sequences and ARS sequences within the 5' and 3'-termini of Ac, but cannot ascribe any function to these sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., 1985. High efficiency transformation of cultured tobacco cells. Plant Physiol. 79: 568–570.

    Google Scholar 

  • An, G., 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81: 86–91.

    Google Scholar 

  • Andre, D., Jacquemin, J. M. & Masson, P., 1983. Isolation and characterization of DNA sequences from Triticum aestivum which function as origins of replication in Saccharomyces cerevisiae. Plant Cell Rep. 2: 175–178.

    Google Scholar 

  • Baker, B., Schell, J., Loerz, H. & Fedoroff, N., 1986. Transposition of the maize controlling element ‘Activator’ in tobacco. Proc. Natl. Acad. Sci. USA 3: 4844–4848.

    Google Scholar 

  • Baker, B., Coupland, G., Fedoroff, N., Starlinger, P. & Schell, J., 1987. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 6: 1547–1554.

    Google Scholar 

  • Beggs, J. D., 1978. Transformation of yeast by replicating hybrid plasmid. Nature 275: 104–109.

    Google Scholar 

  • Brewer, B. J. & Fangman, W. L., 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471.

    Google Scholar 

  • Carty, M. & Menzel, R., 1989. The unexpected antitermination of gyrA-directed transcripts is enhanced by DNA relaxation. Proc. Natl. Acad. Sci. USA 86: 8882–8886.

    Google Scholar 

  • Cashmore, A. M., Albury, M. S., Hadfield, C. & Meacock, P. A., 1988. The 2 μm D region plays a role in yeast plasmid maintenance. Mol. Gen. Genet. 212: 426–431.

    Google Scholar 

  • Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E. & Campbell, J. L., 1984. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell Biol. 4: 2455–2466.

    Google Scholar 

  • Chan, C. S. M. & Tye, B-K., 1980. Autonomously replicating sequences in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77: 6329–6333.

    Google Scholar 

  • Chen, J., Greenblatt, I. M. & Dellaporta, S. L., 1987. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117: 109–116.

    Google Scholar 

  • Coen, E. H., Carpenter, R. & Martin, C., 1986. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47: 285–296.

    Google Scholar 

  • Coupland, G., Baker, B., Schell, J. & Starlinger, P., 1988. Characterization of the maize transposable element Ac by internal deletions. EMBO J. 7: 3653–3659.

    Google Scholar 

  • Craigie, R., Arndt-Jovin, D. J. & Mizuuchi, K., 1985. A defined system for the DNA strand-transfer reaction at the initiation of bacteriophage Mu transposition: Protein and DNA substrate requirements. Proc. Natl. Acad. Sci. USA 82: 7570–7574.

    Google Scholar 

  • Davis, M. A., Simons, R. W. & Kleckner, N., 1985. In 10 protects itself at two levels from fortuitous activation by external promoters. Cell 43: 379–387.

    Google Scholar 

  • Dellaporta, S. L., Wood, J. & Hicks, J. B., 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1 19–21.

    Google Scholar 

  • Fedoroff, N. V., 1989. Maize transposable elements, pp 377–411 in Mobile DNA, edited by Howe, M. M. & Berg, D. E., American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Finnegan, J., Taylor, B., Craig, S. & Dennis, E., 1989. Transposable elements can be used to study cell lineages in transgenic plants. Plant cell 1: 757–764.

    Google Scholar 

  • Fromm, E. M., Taylor, L. P. & Walbot, V., 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Google Scholar 

  • Fuller, R. S., Kaguni, J. M. & Kornberg, A., 1981. Enzymatic replication of the origin of the Escherichia coli chromosome. Proc. Nat. Acad. Sci. USA 78: 7370–7374.

    Google Scholar 

  • Fuller, R. S. & Kornberg, A., 1983. Purified DnaA protein in initiation of replication at the Escherichia coli chromosomal origin of replication. Proc. Nat. Acad. Sci. USA 80: 5817–5821.

    Google Scholar 

  • Fuller, R. S., Funnell, B. E. & Kornberg, A., 1984. The DnaA protein complex with the E. coli chromosomal replication origin (oriC) and Other DNA sites. Cell 38: 889–900.

    Google Scholar 

  • Georgopoulos, C., 1989. The E. coli dnaA initiation protein: a protein for all seasons. Trends In Genetics 5: 319–321.

    Google Scholar 

  • Gierl, A., Saedler, H., & Peterson, P. A., 1989. Maize transposable Elements. Annu. Rev. Genet. 23: 71–85.

    Google Scholar 

  • Giudice, L. D., Filomena, M., Massardo, D. R., Motto, M., Alifano, P. & Wolf, K., 1990. The Mul transposable element of maize contains two promoter signals recognized by the Escherichia coli RNA polymerase. Mol. Gen. Genet. 222: 71–76.

    Google Scholar 

  • Gould, J. H. & Smith, R. H., 1989. A nondestructive assay for GUS in the media of plant tissue cultures. Plant Mol. Biol. Rep. 7: 209–216.

    Google Scholar 

  • Greenblatt, I. M. & Brink, R. A., 1962. Twin mutations in medium varigated pericarp maize. Genetics 47: 489–501.

    Google Scholar 

  • Greenblatt, I. M., 1984. A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 471–485.

    Google Scholar 

  • Gritz, L. & Davies, J., 1983. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia Coli and Saccharomyces cerevisiae. Gene 25: 179–188.

    Google Scholar 

  • Hirota, Y., Yamada, M., Nishimura, A., Oka, A., Sugimoto, K., Asada, K. & Takanami, M., 1981. The DNA replication origin (oriC) of Escherichia coli: structure and function of the oriC-containing DNA fragment. Prog. Nucleic Acid Res. Mol. Biol. 26: 33–47.

    Google Scholar 

  • Huberman, J. A., Spotila, L. D., Nawotka, K. A., El-Assouli, S. M. & Davis, L. R., 1987. The in vivo replication origin of the yeast 2μm plasmid. Cell 51: 473–481.

    Google Scholar 

  • Jefferson, R. A., 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Google Scholar 

  • Jefferson, R. A., Kavanaugh, T. A. & Bevan, M. W., 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Kearsey, S., 1984. Structural reqirements for the function of a yeast chromosomal replicator. Cell 37: 299–307.

    Google Scholar 

  • Knapp, S., Coupland, G., Uhrig, H., Starlinger, P. & Salamini, F., 1988. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Genet. 213: 285–290.

    Google Scholar 

  • Kunze, R. & Starlinger, P., 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177–3185.

    Google Scholar 

  • Kunze, R., Coupland, G., Fusswinkel, H., Feldmar, S., Courage, U., Schein, S., Becker, H-A, Chatterjee, S., Li, M-G & Starlinger, P., 1990. Structure and function of maize transposable element activator (Ac). Plant Mol. Biol. 14: 1–14.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F. & Sambrook, J., 1982. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory.

  • Masson, P. & Fedoroff, N. V., 1989. Mobility of the maize suppressor-mutator element in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA 86: 2219–2223.

    Google Scholar 

  • Mead, D. A., Szczesna-Skorupa, E. & Kemper, B., 1986. Singlestranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1: 67–74.

    Google Scholar 

  • McClintock, B., 1948. Mutable loci in maize. Carnegie Inst. Washington Year Book 47: 155–169.

    Google Scholar 

  • Mills, J. S., Kingsman, A. J. & Kingsman, S. M., 1986. Drosophila ARSs contain the yeast ARS consensus sequence and a replication enhancer. Nucl. Acids. Res. 14: 6633–6648.

    Google Scholar 

  • Montiel, J. F., Norbury, C. T., Tuite, M. F., Doboson, M. J., Mills, J. S., Kingsman, A. J. & Kingsman, S. M., 1984. Characterization of human chromosomal DNA sequences which replicate autonomously in Saccharomyces cerevisiae. Nucl. Acids Res. 12: 1049–1068.

    Google Scholar 

  • Muller, M. N., Yoder, J. I. & Starlinger, P., 1984. The DNA sequence of the transposable element Ac of Zea mays L. Mol. Gen. Genet. 198: 19–24.

    Google Scholar 

  • Pereira, A. & Saedler, H., 1989. Transpositional behavior of the maize En/Spm element in transgenic tobacco. EMBO J. 8: 1315–1321.

    Google Scholar 

  • Phadnis, S. H. & Berg, D. E., 1987. Identification of base pairs in the outside end of insertion sequence IS50 that are needed for IS50 and Tn5 transposition. Proc. Natl. Acad. Sci. USA 84: 9118–9122.

    Google Scholar 

  • Rion, D. C. & Rubin, G. M., 1988. Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element. Proc. Natl. Acad. Sci. USA 85: 8929–8933.

    Google Scholar 

  • Robbins, T. P., Carpenter, R. & Coen, E. S., 1989. A chromosomal rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. EMBO J. 8: 5–13.

    Google Scholar 

  • Saedier, H. & Nevers, P., 1985. Transposition in plants: a molecular model. EMBO J. 4: 585–590.

    Google Scholar 

  • Sanger, F., Nicklen, S. & Coulson, A. R., 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Stinchcomb, D. T., Thomas, M., Kelly, J., Selker, E. & Davis, R. W., 1980. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. USA 77: 4559–4563.

    Google Scholar 

  • Sundaresan, V. & Freeling, M., 1987. An extrachromosomal form of the Mu transposons of maize. Proc. Natl. Acad. Sci. USA 84: 4924–4928.

    Google Scholar 

  • Sutton, W. D., Gerlach, W. L., Shwartz & Peacock, W. J., 1984. Molecular analysis of Ds controlling element mutations at the Adh 1 locus of maize. Science 223: 1265–1268.

    Google Scholar 

  • Suzuki, Y. & Iino, T., 1989. Ars region in TL-DNA on octopine type Ti plasmids. Mol. Gen. Genet. 218: 284–288.

    Google Scholar 

  • Tomizawa, J. & Selzer, G., 1979. Initiation of DNA synthesis in Escherichia coli. Ann. Rev. Biochem. 48: 999–1034.

    Google Scholar 

  • Uchmiya, H., Ohtani, T., Ohgawara, T., Harada, H., Sugita, M. & Sugiura, M., 1983. Molecular coling of tobacco chromosomal and chloroplast DNA segments capable of replication in yeast. Mol. Gen. Genet. 192: 1–4.

    Google Scholar 

  • VanSluys, M. A., Tempe, J. & Fedoroff, N., 1987. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 6: 3881–3889.

    Google Scholar 

  • Waiter, L. A. & Grindley, D. F., 1988. Ac transposase and integration host factor bind cooperatively at both ends of the element. EMBO J. 7: 1907–1911.

    Google Scholar 

  • Yin, J. C. P. & Reznikoff, W. S., 1987. DnaA, an essential host gene, and Tn5 transposition. J. Bacteriol. 169: 4637–4645.

    Google Scholar 

  • Yoder, J., Paylys, J., Alpert, K. & Lassner, M., 1988. Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Google Scholar 

  • Zhou, J. H. & Atherly, A. G., 1990. In situ detection of transposition of maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Rep. 8: 542–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J.H., Myers, A. & Atherly, A.G. Functional analysis of the 3′-terminal sequence of the maize controlling element (Ac) by internal replacement and deletion mutagenesis. Genetica 84, 13–21 (1991). https://doi.org/10.1007/BF00123980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123980

Keywords

Navigation