Skip to main content
Log in

A model of turbulence spectra in the atmospheric surface layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The spectral equations of turbulent kinetic energy and temperature variance have been solved by using Onsager's energy cascade model and by extending Onsager's model to closure of terms that embody the interaction of turbulent and mean flow.

The spectral model yields the following results: In a stably stratified shear flow, the peak wave numbers of the spectra of energy and temperature variance shift toward larger wave numbers as stability increases. In an unstably stratified flow, the peak wave numbers of energy spectra move toward smaller wave numbers as instability increases, whereas the opposite trend is observed for the peak wave numbers of temperature variance spectra. Hence, the peak wave numbers of temperature spectra show a discontinuity at the transition from stable to unstable stratification. At near neutral stratification, both spectra reveal a bimodal structure.

The universal functions of the Monin-Obukhov similarity theory are predicted to behave as Φ m ~ Φ H ~ (- Z/L)-1/3 in an extremely unstable stratification and as Φ m ~ Φ H ~ z/L in an extremely stable stratification. For a stably stratified flow, a constant turbulent Prandtl number is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Busch, N. E. and Panofsky, H. A.: 1968, ‘Recent Spectra of Atmospheric Turbulence’, Quart. J. Roy. Meteorol. Soc. 94,132–148.

    Google Scholar 

  • Businger, J. A.: 1961, ‘On the Relation between the Spectrum of Turbulence and the Diabatic Wind Profile’. J. Geophys. Res. 66,2405–2409.

    Google Scholar 

  • Businger, J. A.: 1973, ‘A Note on Free Convection’, Boundary-Layer Meteorol. 4,323–326.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Relationship in the Atmospheric Surface Layer’, J. Atmos. Sci. 28,181–189.

    Google Scholar 

  • Carl, D. M., Tarbell, T. C., and Panofsky, H. A.: 1973, ‘Profiles of Wind and Temperature from Tower over Homogeneous Terrain’. J. Atmos. Sci. 30,788–794.

    Google Scholar 

  • Claussen, M.: 1983, ‘On Extension of Malkus Theory of Turbulence to Stably Stratified Shear Flow’, Boundary-Layer Meteorol. 27,209–215.

    Google Scholar 

  • Claussen, M.: 1984, ‘Surface Layer Similarity in Circular Couette Flow’, J. Fluid Mech. 144,123–131.

    Google Scholar 

  • Claussen, M.: 1985, ‘Estimation of the Monin-Obukhov Similarity Functions from a Spectral Model’, Boundary-Layer Meteorol. 33,233–243.

    Google Scholar 

  • Corrsin, S.: 1964, ‘Further Generalization of Onsager's Cascade Model for Turbulent Spectra’, Phys. Fluids 7,1156–1159.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7,363–372.

    Google Scholar 

  • Dyer, A. J. and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-gradient Relationships at the 1976 ITCE’, Boundary-Layer Meteorol. 22,3–19.

    Google Scholar 

  • Fichtl, G. H. and McVehil, G. H.: 1971, ‘Longitudinal and Lateral Spectra of Turbulence in the Atmospheric Boundary Layer at the Kennedy Space Center’, J. Appl. Meteorol. 9,51–63.

    Google Scholar 

  • Gisina, F. A.: 1966, ‘The Effect of Mean Velocity and Temperature Gradients on the Spectral Characteristics of Turbulence’, Izv. Atmos. Oceanic Phys. 2,804–813.

    Google Scholar 

  • Grant, H. L., Stewart, R. W., and Miolliet, A.: 1962, ‘Turbulence Spectra from a Tidal Channel’, J. Fluid. Mech. 12,241–268.

    Google Scholar 

  • Hennemuth, B.: 1981, ‘Three-Dimensional Structure of Energy Containing Eddies in the Surface Layer’, Beitr. Phys. Atmosph. 54,422–441.

    Google Scholar 

  • Hinze, J.: 1975, Turbulence, McGraw Hill Book Cp., New York, 2nd ed.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33,2151–2163.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98,563–589.

    Google Scholar 

  • Kolmogoroff, A. N.: 1941, ‘Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr hohen Reynold'schen Zahlen’, in: H. Goering (ed.) Sammelband zur statistischen Theorie der Turbulenz, Berlin 1958.

  • Kruspe, G.: 1983, personal communication. The unpublished data are partly presented in Wucknitz, J., 1974: Betimmung der turbulenten Flüsse von Impuls in sensibler Wärme aus Fluktuationsmessungen und Struktur des Windfeldes über den Wellen über dem tropischen Atlantik während APEX. Berichte des Institutes für Radiometeorologie und Maritime Meteorologie, Nr. 25.

  • Lin, J. T.: 1972, ‘Velocity Spectrum of Locally Isotopic Turbulence in the Inertial and Dissipation Ranges’, Phys. Fluids 15,205–207.

    Google Scholar 

  • Malkus, W. V. R.: 1979, ‘Turbulent Velocity Profiles from Stability Criteria’, J. Fluid Mech. 90,401–414.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Fundamentale Gesetzmäβigkeiten der turbulenten Vermischung in der bodennahen Schicht der Atmosphäre’, in H. Goering (ed.), Sammelband zur statistischen Theorie der Turbulenz, Berlin 1958.

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. I. Cambridge, MA., MIT Press, Ed. J. L. Lumley.

    Google Scholar 

  • Onsager, L.: 1945, ‘The Distribution of Energy in Turbulence’. Phys. Rev. 68,286 (abstract only).

    Google Scholar 

  • Panchev, S.: 1971, Random Functions and Turbulence, Pergamon Press, D. TerHarr (ed.).

  • Panofsky, H. A.: 1978, ‘Matching in the Convective Planetary Boundary Layer’, J. Atmos. Sci. 35,272–276.

    Google Scholar 

  • Pao, Y. H.: 1965, ‘Structure of Turbulent Velocity and Scalar Fields at Large Wave Numbers’, Phys. Fluids 8,1063–1075.

    Google Scholar 

  • Pao, Y. H.: 1968, ‘Transfer of Turbulent Energy and Scalar Quantities at Large Wave Numbers’. Phys. Fluids 11,1371–1372.

    Google Scholar 

  • Reuter, U.: 1978, ‘On the Mutual Interaction of Overheated Ascending Bubbles’, Beitr. Phys. Atmosph. 51. 352–359.

    Google Scholar 

  • Roth, R.: 1972, ‘Modelle für das Windprofil über einer rauhen und einer glatten Oberfläche’, Beitr. Phys. Atmosph. 45,277–304.

    Google Scholar 

  • Rotta, J.: 1972, Turbulente Strömungen, B. G. Teubner, Stuttgart.

    Google Scholar 

  • Straka, J., Fiedler, F., and Hinzpeter, H.: 1978, ‘A Note on the Spectrum of Temperature Variance, in the Inertial and Dissipation Range of Isotropic Turbulence’, Beitr. Phys. Atmosph. 51,86–90.

    Google Scholar 

  • Tchen, C. M.: 1953, ‘On the Spectrum of Energy in Turbulent Shear Flow’. J. Res. Nat. Bur. Standards 50,51–62.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence. Cambridge, Ma., MIT Press.

    Google Scholar 

  • Wyngaard, J. C.: 1973, On Surface Layer Turbulence, Workshop on Micrometeorology, Amer. Met. Soc., 101–149.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claussen, M. A model of turbulence spectra in the atmospheric surface layer. Boundary-Layer Meteorol 33, 151–172 (1985). https://doi.org/10.1007/BF00123388

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123388

Keywords

Navigation