Advertisement

Genetic Resources and Crop Evolution

, Volume 43, Issue 3, pp 229–247 | Cite as

The genus Amygdalus L. (Rosaceae): Species relationships, distribution and evolution under domestication

  • Kazimriez Browicz
  • Daniel Zohary
Regular Research Papers

Summary

The paper reviews the taxonomic relationships, morphological distinction, geographical distribution and ecological specificities of the twenty six species recognized (by us) in Amygdalus L. It also surveys the intra-genetic structure in this genus stressing the fact that they fall into five groups of closely related vicarious species: (i) Communis group (9 species), (ii) Orientalis group (6 species), (iii) Sect. Chamaeamygdalus (4 species), (iv) Sect. Spartioides (2 species), and (v) Subgenus Dodecandara (5 species). Within each group, species are separated from one another geographically (in few cases by altitude). The only major exception to such allopatric distribution is found in A. communis L., and this is interpreted as an outcome of domestication. Interspecific sterility barriers are absent, or only weakly developed in Amygdalus, and numerous inter-specific hybrids (particularly between the crop and various wild almond species) have been detected. Therefore most (may be all) wild almond species constitute the primary gene-pool of the cultivated nut crop.

The combined botanical and archaeological evidene points to the Levant countries as the place where the almond was taken into cultivation. Wild forms of A. communis are very likely native only to this area. Also the earliest archaeological signs of almond domestication come from this area.

Key words

Amygdalus L. almonds enumeration and characterization of species speciation patterns interspecific hybridization domestication wild genetic resources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boissier, E., 1859. Diagnosis plantarum orientalium novarum, Second Series 6, p. 71. Leipzig and Paris.Google Scholar
  2. Bornmüller, J., 1938. Iter Persico-Turcicum 1892–1893. Beith. Bot. Centralbl. 58B: 252–302. (p. 247).Google Scholar
  3. Browicz, K., 1969 Amygdalus. In: K.H. Rechinger (Ed.), Flora Iranica vol. 66, pp. 166–187, 206. Akademische Druck-u. Verlagsanstalt. Graz, Austria.Google Scholar
  4. Browicz, K., 1972. Amygdalus. In: P.H. Davis (Ed.), Flora of Turkey, Vol. 4, pp. 21–28. Edinburgh Univ. Press.Google Scholar
  5. Browicz, K., 1984. Amygdalus pabotti Browicz—a new species of almond from western Iran. Fragment. Flor. et Geobotanica 28 (4): 621–623.Google Scholar
  6. Browicz, K., 1985. Amygdalus x rhodia (Roseaceae), a new hybrid almond from Rhodes. Ann. Musei Goulandris 7: 33–27.Google Scholar
  7. Browicz, K., 1989. Conspect and chorology of the genera Amygdalus L. and Louiseania Carriere. Arbor. Kornickie 34: 31–54.Google Scholar
  8. Browicz, K., 1991. Chrology of trees and shrubs in south-west Asia and adjacent regions, Vol. 8. Polish Scientific Publishers, Warszawa-Poznán. 86 pp.Google Scholar
  9. Browicz, K. & J. Zieliński, 1984. Chorology of trees and shrubs in south-west Asia and adjacent regions, Vol. 4, Polish Scientific Publishers, Warzsawa-Poznán. 80 pp.Google Scholar
  10. Browicz, K. & J. Zieliński, 1990. Chorology of trees and shrubs in south-west Asia and adjacent regions, Vol. 7. Polish Scientific Publishers, Warzsawa-Poznán. 86 pp.Google Scholar
  11. Danin, A., 1980. A new Amygdalus from Israel. Notes Roy. Bot. Gard. Edinburgh 38: 285–293.Google Scholar
  12. Denisov, V.P., 1988. Almond genetic resources in the USSR and their use in production and breeding. Acta Horticulturae 224: 299–306.Google Scholar
  13. Denisov, V.P., A.A. Richter & A.A. Yadrov, 1973. Dikie mindali juga Armenii, Trudy Prikl. Bot. Genet. Selek. 62 (3): 3–92.Google Scholar
  14. Dicenta, F. & J.E. Garcia, 1993a. Inheritance of the kernel flavour in almond. Heredity 70: 308–312.Google Scholar
  15. Dicenta, F. & J.E. Garcia, 1993b. Inheritance of self-incompatibility in almond. Heredity 70: 313–317.Google Scholar
  16. Felipe, A.J. & Socias i Company R., 1977. Un amandier sauvage, probablemaent A. webbii, non encore mentionné en Espagne. 3rd Colloque du groupe de recherche et d'étude méditerranéene pour le pistachier et l'amandier GREMPA, CIHEAM, Bari, Italy. pp. 78–79.Google Scholar
  17. Grant, V., 1981. Plant speciation (2nd Edition). Columbia Univ. Press, New York.Google Scholar
  18. Grasselly, C., 1976. Les espéces sauvages d'amandiers. Options Méditerranéennes No. 32, pp. 28–43.Google Scholar
  19. Grasselly, C., 1977. Réflexions sur les caractéristiques des espéces sauvage d'amandier et sur leur utilisation eventuelle dans des programmes d'amélioration génétique. 3e Colluque du groupe de recherche et d'étude méditerranéene pour le pistachier et l'amandier GREMPA, CIHEAM, Bari, Italy. pp. 70–76.Google Scholar
  20. Grasselly, C. & P. Crossa-Raynaud, 1980. L'Amandier, G.-P., Maison neuve et Larose, Paris. 446 pp.Google Scholar
  21. Gülcan, R. (Ed.), 1985. Descriptor list for almond (Prunus amygdalus). (Revised edition). International Board for Plant Genetic Resources, Rome.Google Scholar
  22. Hepper, F.N., 1990. Pharaoh's flowers: the botanical treasures of Tutankhamum. Her Majesty's Stationary Office, London. 80 pp.Google Scholar
  23. Jordanov, D. (Ed.) 1973. Flora Reipublicae Popularis Bulgaricae Vol. 5. Bulgarian Academy of Science, Sofia.Google Scholar
  24. Kester, D.E. & R. Asay, 1975. Almonds. In: J. Janick & J.N. Moore (Eds.), Advances in Fruit Breeding, pp. 387–491. Purdue Univ. Press, West Lafayette, Indiana.Google Scholar
  25. Kester, D.E. & R. Asay, 1977. Germplasm sources of almond. Calif. Agricul. 31: 20–21.Google Scholar
  26. Kester, D.E., T.M. Gradziel & C. Grassely, 1991. Almonds (Prunis). In: J.N. Moore & J.R. Ballington (Eds.), Genetic Resources of Temperate Fruit and Nut Crops. pp. 701–758. Intern. Soc. Horticult. Sci., Wageningen, The Netherlands.Google Scholar
  27. Khatamsaz, M., 1988. Studies on the Rosaceae family in Iran, new taxa and new records. Iranian Jour. Botany 4 (1): 111–125.Google Scholar
  28. Korshinskij, S.I., 1901. Zametka o rodonačalnoj forme obyknovennogo mindalja i blizkich vidach. Jzv. Imper. Akad. Nauk, 5th ser., 14: 85–94.Google Scholar
  29. Linczevskij, O.A., 1951. Novyj vid mindalja iz Srednej Azii. Bot. Mater. Gerb. Bot. Inst. Komarova. Akad. Nauk SSSR. 14: 202–205.Google Scholar
  30. Nábelek, F., 1923. Iter Turcico-Persicum, part I. Publ. Fac. Sci. Univ. Masaryk (Brno) 35: 1–144 (p.104).Google Scholar
  31. Olmo, H.P., 1976. Grapes. In: N.W. Simmonds, (Ed.). Evolution of Crop Plants, pp. 294–298. Longman, London.Google Scholar
  32. Pachomova, M.G., 1954. Novyj vid mindalja s khrebta Kara-Tjube. Bot. Mater. Gerb. Bot. Inst. Komarova, Akad. Nauk SSSR 16: 198–206.Google Scholar
  33. Pachomova, M.G., 1961. Mindali Uzbekistana (Almonds of Uzbekistan). Akademija Nauk Uzbekskoj SSR, Tashkent. 233 pp.Google Scholar
  34. Popov, M.G., 1929. Dikie plodovye derevja i kustaniki Srednej Azii (Wild growing fruit trees and shrubs of Asia Media). Trudy Prikl. Bot. Genet. Selek. 22 (3): 241–483.Google Scholar
  35. Rehder, A., 1940. Manual of Cultivated Trees and Shrubs (2nd edition). Macmillan, New York. 996 pp.Google Scholar
  36. Richter, A.A., 1969. Puti i metodi selekcii mindala. In: Selekcia kostochkovih i subtropicheskih, dekorativnih i efinomaslichnih kultur. Trudy gos. Nikit. bot. sad (Simperepol) 43: 81–94.Google Scholar
  37. Richter, A.A., 1983. Mindal. In: Dostijenia selekcii plodovih kultur i vinograda, pp. 169–177. Kolos, Moskva.Google Scholar
  38. Sarbirov, B.Z., 1959. Novyj vid mindalja iz Uzbekistana. Bot. Mater. Gerb. Bot. Inst. Komarova, Akad. Nauk SSSR 19: 230–232.Google Scholar
  39. Serafimov, S., 1971. A spontaneous hybrid of Amygdalus kuramica Korsh. and A. spinosissima Bge. from Afghanistan. Compt. Rend. Acad. Scien. Agric. Bulgarie 4 (3): 349–351.Google Scholar
  40. Serafimov, S., 1977. Spontannyj gibrid mezedu Amygdalus zabulica Seraf. i A. erioclada Bornm. Novost. Sistem. Vyss. Rast. 14: 124–136.Google Scholar
  41. Spach, E., 1843. Monographia generis Amygdalus. Ann. Sci. Nat. (Paris), ser.2, 19: 106–128.Google Scholar
  42. Spiegel-Roy, P & J. Kochba, 1981. Inheritance of nut and kernel traits in almond (Prunus amygdalus Batsch). Euphytica 30: 167–174.Google Scholar
  43. Socias i Company, R., 1990. Breeding of self-compatible almonds. Plant Breed. Reviews 8: 313–338.Google Scholar
  44. Svjazeva, O.A., 1980. Rod Amygdalus L.—Mindal. In: S.J. Sokolov, O.A. Svjazeva & V.A. Kubli (Eds.), Arealy derevev i kustarnikov SSSR 2: 104–109. Leningrad.Google Scholar
  45. Vlasic, A. 1977. L'Amygdalus webbii Spach ed i suolsi ibridi col pesco com portaninnerstro del mandrolo. 3e Colloque du groupe de recherche et d'etude méditerranéene pour le pistachier et l'amandier GREMPA, CIHEAM, Bari, Italy. pp. 80–81.Google Scholar
  46. Watkins, R., 1981. Apples (genus Malus), pears (genus Pyrus) and plums, apricots, almonds, peaches, cherries (genus Prunus). In: B. Hora (Ed.). The Oxford Encyclopaedia of Trees of the World, pp. 187–202. Oxford Univ. Press, Oxford.Google Scholar
  47. Zaprjagaeva, V.I., 1964. Dikorastuščie plodovye Tadžikistana (Wild growing fruits of Tadzhikistan). Nauka, Moskva-Leningrad. 695 pp.Google Scholar
  48. Zohary, D., 1983: Wild genetic resources of crops in Israel. Israel Jour. Bot. 32: 97–127.Google Scholar
  49. Zohary, D. & M. Hopf, 1993. Domestication of plants in the Old World (2nd edition). Oxford Univ. Press, Oxford. 278 pp.Google Scholar
  50. Zohary, M., 1972. Flora Palaestina, Part 2 Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Kazimriez Browicz
    • 1
  • Daniel Zohary
    • 2
  1. 1.Polish Academy of SciencesInstitute of DendrologyKórnik near PoznánPoland
  2. 2.Department of Evolution, Systematics and EcologyThe Hebrew UniversityJerusalemIsrael

Personalised recommendations