Skip to main content
Log in

Etude experimentale d'une relation entre le coefficient de frottement et le facteur de rafales en regime de vent faible et au-dessus d'une surface d'eau

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In usual aerodynamic bulk formulas, the drag coefficient C d has been best estimated in the 5 to 16 m s−1 range of mean wind velocity; a value of 1.3 × 10−3 is often considered for operational use. However, in the 0 to 5 m s−1 range of mean wind velocity, corresponding to meteorological conditions of very light wind, experimental results have not resulted in any convincing agreement between various authors (Hicks et al., 1974; Wu, 1969; Kondo and Fujinawa, 1972; Mitsuta, 1973; Brocks and Krugermeyer, 1970).

In the present paper, the drag coefficient is experimentally determined in conditions of very light wind and limited fetch (about 250 m). Due to this limited fetch, we have to be cautious in the extrapolation of our results to other sites. Nevertheless, some of experimental results are worth describing, considering the paucity of data in light wind conditions.

Mean value and standard deviation (respectively 1.84 × 10−3 and 1.24 × 10−3) are obtained from 70 runs of 10-min duration. Mean wind velocities observed at 2 m above water surface are found to lie between 1.2 and 3.6 m s−1. Whereas this mean value is in fair agreement with C d 10 = 1.3 × 10−3, usually given for the 5 to 16 m s−1 range (Kraus, 1972), the above value for the standard deviation seems too large to be left without further analysis.

A more exhaustive analysis of the 70 values obtained for C d shows that it depends on a parameter characteristic of longitudinal fluctuations of the wind velocity. A similar idea was put forward earlier by Kraus (1972). Relations between the drag coefficient and wind fluctuations may be tentatively given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% igdacaGGUaGaaGimaiaaiEdacqGHRaWkcaaIXaGaaGinaiaac6caca% aIZaGaaGinamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadwhacaGGNaaa% beaaaOqaaaaaaiaawIcacaGLPaaaruqqYLwySbacfaGaa8hEaiaa-b% cacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaabcca% caqGGaGaaeiiaiaabccacaqGXaGaaeOlaiaabAdacaqGGaGaaeyBai% aabccacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiabgsMiJkqa% dwhagaqeamaaBaaaleaacaaIYaaabeaakiabgsMiJkaaiodacaGGUa% GaaGOnaiaab2gacaqGGaGaae4CamaaCaaaleqabaGaaeylaiaabgda% aaaaaa!634E!\[C_{d2} = \left( { - 1.07 + 14.34\frac{{\sigma _{u'} }}{{}}} \right)x 10^{ - 3} {\text{ 1}}{\text{.6 m s}}^{{\text{ - 1}}} \leqslant \bar u_2 \leqslant 3.6{\text{m s}}^{{\text{ - 1}}} \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% iodacaGGUaGaaGioaiaaiAdacqGHRaWkcaaIZaGaaiOlaiaaiodaca% aI2aGaam4raaGaayjkaiaawMcaaerbbjxAHXgaiuaacaWF4bGaa8hi% aiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaeilaa% aa!4B42!\[C_{d2} = \left( { - 3.86 + 3.36G} \right)x 10^{ - 3} {\text{,}}\] where σ u/\-u 2 and G, respectively, represent the standard deviation of u′ normalized with \-u 2 and the longitudinal gust factor quoted in Smith (1974).

We have established a relationship between these fluctuation parameters and the stability as given by a bulk layer Richardson number (between 0 and 2 m). These relations are given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHdpWCdaWgaaWcbaGaamyDaiaacEcaaeqaaaGcbaGabmyDayaaraWa% aSbaaSqaaiaaikdaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymai% aaikdacqGHRaWkcaaIZaGaaiOlaiaaiIdacaaI1aGaaeiiaiaabkfa% caqGPbWaaSbaaSqaaiaabcdacaqGTaGaaeOmaaqabaaaaa!4802!\[\frac{{\sigma _{u'} }}{{\bar u_2 }} = 0.12 + 3.85{\text{ Ri}}_{{\text{0 - 2}}} \] and G=1.35+14.56 Ri0–2. The increase in gustiness with stability is in qualitative agreement with Goptarev (1957)'s experimental results.

In spite of the high-level correlation between C d and σ u/\-u 2(G) on the one hand and between σ u/\-u 2(G) and Ri0–2on the other hand, we found a poor relationship between C d and Ri0–2. It is worth noting too that the trend observed here for C d to increase with stability is in complete disagreement with the usual theoretical expectation for C d to decrease with increasing layer stability above water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • Boutin, C: 1976, ‘Evolution et destruction de la stratification thermique estivale d'un lac’, Communication aux XIVème Journées de l'Hydraulique, Paris (à paraître dans la Houille Blanche).

  • Boutin, C., Albignat, J. P., and Isaka, H.: 1977, ‘Echanges de masse et de chaleur entre un plan d'eau profonde et l'atmosphère: comparaison de différentes formulations et méthodes’ (à paraître).

  • Brocks, K. and Krugermeyer, L.: 1970, ‘The Hydrodynamics of the Sea Surface’, Institut für Radiometeorologie und Maritime Meteorologie 14, Hamburg University.

  • Brook, R. R. and Spillane, K. T.: 1970, ‘On the Variation of Maximum Wind Gusts with Height’, J. Appl. Meteorol. 9, 72–78.

    Google Scholar 

  • Busch, N. E.: 1973, ‘The Surface Boundary Layer (Part I)’, Boundary-Layer Meteorol. 4, 213–240.

    Google Scholar 

  • Deacon, E. L. and Webb, E. K.: 1962, ‘Small Scale Interactions’, The Sea 1, 43–87, Interscience, New York.

    Google Scholar 

  • Dunckel, M., Hasse, L., Krugermeyer, L., Schriever, D., Wucknitz, J.: 1974, ‘Turbulent Fluxes of Momentum, Heat and Water Vapor in the Atmospheric Surface Layer at Sea during ATEX’, Boundary-Layer Meteorol. 6, 81–106.

    Google Scholar 

  • Goptarev, N. P.: 1957, ‘Some Results of Wind Profil Measurements on Marine Oil Drilling Platforms’, Tr. Cros. Okeanogr. Inst. 36, 128–202.

    Google Scholar 

  • Hicks, B. B., Drinkrow, R. L., and Grauze, G.: 1974, ‘Drag and Bulk Transfert Coefficients Associated with a Shallow Water Surface’, Boundary-Layer Meteorol. 6, 287–298.

    Google Scholar 

  • I.R.S.T.: 1974, ‘Essais en soufflerie du site de la Godivelle’.

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface-Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–569.

    Google Scholar 

  • Kondo, J.: 1962, ‘Evaporation from Extensive Surfaces of Water’, The Science Report of the Tohoku University, Series 5, Geophysics 14, 107–119.

    Google Scholar 

  • Kondo, J. and Fujinawa, Y.: 1972, ‘Errors in Estimation of Drag Coefficient for Sea Surface in Light Winds’, J. Meteorol. Soc. Japan, 145–149.

  • Kondo, J.: 1975, ‘Air-Sea Bulk Transfert Coefficients in Diabatic Conditions’, Boundary-Layer Meteorol. 9, 91–112.

    Google Scholar 

  • Kraus, E. B.: 1972, ‘Atmosphere-Ocean Interaction’, Oxford Monographs on Meteorol., 134–166.

  • Lacombe, H., Revault D'Allones, M., Crepon, M., and Fieux, M.: 1976, ‘Les Echanges Océan-Atmosphère’, Courrier du C.N.R.S. 20.

  • Mitsuta, Y.: 1973, ‘The Air-Mass Transformation Experiment’, GARP Series 13, 13–15.

    Google Scholar 

  • Mitsuta, Y. and Fujitani, T.: 1974, ‘Direct Measurement of Turbulent Fluxes on a Cruising Ship’, Boundary-Layer Meteorol. 6, 81–106.

    Google Scholar 

  • Miyake, M., Stewart, R. W., and Burling, R. W.: 1970, ‘Spectra and Cospectra of Turbulence over Water’, Quart. J. Meteorol. Soc. 96, 138–143.

    Google Scholar 

  • Panofsky, H. A. and Mares, E.: 1968, ‘Recent Measurements of Cospectra for Heat Flux and Stress’, Quart. J. Meteorol. Soc. 94, 581–585.

    Google Scholar 

  • Priestley, C. H. B.: 1959, ‘Turbulent Transfer in the Lower Atmosphere’, University of Chicago Press.

  • Roll, H. V.: 1965, ‘Physics of the Marine Atmosphere’, Academic Press Inc., New York, p. 426.

    Google Scholar 

  • Roth, E., Merlivat, L., Courtois, G., Cornuet, R., Guizerix, J., Margrita, R., Molinar, J., and Gras, R.: 1971, ‘Application des isotopes stables et radioactifs dans le domaine de l'hydrologie et de la sédimentologie’, Communication à la 4ème Conf. Int. des Nations Unies sur l'Utilisation de l'Energie Atomique à des Fins Pacifiques, Genève (Suisse).

  • Sheppard, P. A., Tribble, D. T., Garratt, J. R.: 1972, ‘Studies of Turbulence in the Surface Layer over Water (Lough Neagh), Part I: Instrumentation, Programmes, Profiles’, Quart. J. Meteorol. Soc. 98, 627–641.

    Google Scholar 

  • Smith, S. D.: 1974, ‘Eddy Flux Measurements over Lake Ontario’, Boundary-Layer Meteorol. 6, 235–255.

    Google Scholar 

  • Wu, J.: 1969, Wind Stress and Surface Roughness at Air-Sea Interface’, J. Geophys. Res. 74, 444–454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

E.R.A. du C.N.R.S. nℴ 259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutin, C., Boullery, B., Albignat, J.P. et al. Etude experimentale d'une relation entre le coefficient de frottement et le facteur de rafales en regime de vent faible et au-dessus d'une surface d'eau. Boundary-Layer Meteorol 12, 391–403 (1977). https://doi.org/10.1007/BF00123189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00123189

Navigation