Skip to main content
Log in

Spermiogenesis of inversion heterozygotes in backcross hybrids between Drosophila buzzatii and D. serido

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Interspecific F1 hybrid females of D. serido and D. buzzatii are fertile, but hybrid males are sterile. By successive backcrossing of hybrid females to D. buzzatii males it is possible to diminish the genomic contribution of D. serido to the hybrid karyotype. Finally, only selected chromosome sections of D. serido known as inversions restricted to this species were individually left in the otherwise D. buzzatii karyotype, namely: 2 C2b-F4a (j9m9n9), 2 B2c-F4a (j9k9), 3 C5a-G1b (k2), 4 E2a-G2f (m) and 5 C5d-F2h (w). The present paper deals with the influence of these chromosome sections on sperm differentiation. Any of them produces hybrid male sterility in heterozygous condition. We analyzed spermiogenesis using the DNA specific fluorescence dye BAO in hybrid males which were heterozygous either for only one inversion, as in chromosomes 3, 4 and 5, or for a series of inversions on the same chromosome, as in chromosome 2. The abnormalities recorded included abnormal formation of the cysts, lower than normal number of cysts, abnormal number of nuclei per cyst, incomplete elongation of the cyst, incomplete elongation of the nuclei, displacement of the nuclei from the head region of the cyst and lack of individualization. In no case was there any contents in the seminal vesicle. The section from chromosome 2 of D. serido had the most drastic effect; the disruption produced by the chromosome section corresponding to inversion 3 k2 was only a little more severe than that due to 5 w, and both may be distinguished only quantitatively; inversion 4 m produced the slightest deviation from normal spermiogenesis. The larger the serido section introduced in the hybrid, the more severe were the abnormalities it produced. An interpretation in terms of a balance genic theory on the functioning of the genetic system is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baimai, V., Sene, M. M. & Pereira, M. A. Q. R., 1983. Heterochromatin and karyotypic differentiation of some neotropical cactus breeding species of the Drosophila leta species group. Genetica 60: 81–92.

    Google Scholar 

  • Bridges, C. B., 1922. The origin of variation in sexual and sex-limited characters. Am. Nat. 56: 51–63.

    Google Scholar 

  • David, J., 1959. Étude quantitative du développement de la Drosophile élevéc en milieu axénique. Bull. biol. Fr. Belg. 93: 472–505.

    Google Scholar 

  • Dobzhansky, T., 1934. Studies on hybrid sterillity. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z. Zellforsch. mikrosk. Anat. 21: 169–223.

    Google Scholar 

  • Dobzhansky, T., 1936. Studies on hybrid sterility. II. localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21: 113–135.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the evolutionary process. Columbia Univ. Press New York.

    Google Scholar 

  • Dobzhansky, T. & Tan, C. C., 1936. Studies on hybrid sterility. III. A comparison of the gene arrangement in two species, Drosophila pseudoobscura and D. miranda. Z. indukt. Abstamm,-VererblLehre 72: 88–114.

    Google Scholar 

  • Dobzhansky, T. & Beadle, G. W., 1936. Studies on hybrid sterility. IV. Transplanted testes in Drosophila pseudoobscura. Geneties 21: 832–840.

    Google Scholar 

  • Evgenev, M. B., 1971. The pattern of polytene chromosome coanjugation and crossing-over in interspecific hybrids of Drosophila. Theoret. appl. Genetics 41: 249–254.

    Google Scholar 

  • Goldschmidt, R. B., 1940. The material basis of evolution. Yale Univ. Press. New Haven.

    Google Scholar 

  • Goldschmidt, R. B., 1955. Theoretical geneties. Univ. of California Press, Berkeley & Los Angeles.

    Google Scholar 

  • Hauschteck-Jungen, E. & Maurer, B., 1976. Sperm dysfunction in sex-ratio males of Drosophila subobscura. Genetica 46: 459–477.

    Google Scholar 

  • Kerkis, J., 1933. Development of gonads in hybrids between Drosophila melanogaster and D. simulans. J. exp. Zool. 66: 477–509.

    Google Scholar 

  • Laugé, G., 1980. Sex determination In: M.Ashburner & T. R. F.Wright (eds), The geneties and biology of Drosophila, Vol. 2d. Academic Press, London.

    Google Scholar 

  • Lindsley, D. L. & Tokuyasu, K. T., 1980. Spermatogenesis. In: M.Ashburner & T. R. F.Wright (eds), The genetics and biology of Drosophila, Vol. 2d. Academic Press, London.

    Google Scholar 

  • MacGregor, H. C., 1982. Big chromosomes and speciation amongst Amphibia. In: G. A.Dover & R. B.Flavell (eds), Genome evolution. Academic Press, London.

    Google Scholar 

  • Mainland, G. B., 1942. Genetic relationships in the Drosophila funebris group. Univ. Texas Publ. 4228: 74–112.

    Google Scholar 

  • Moran, Ch., 1981. Spermatogenesis in natural and experimental hybrids between chromosomally differentiated taxa of Caledia captiva. Chromosoma 81: 579–591.

    Google Scholar 

  • Patterson, J. T., Brown, M. S. & Stone, W. S., 1940. Experimentally produced aneuploidy involving autosomes of Drosophila melanogaster. Univ. Texas Publ. 4032: 167–189.

    Google Scholar 

  • Patterson, J. T. & Stone, W. S., 1952. Evolution in the genus Drosophila. Macmillan, New York.

    Google Scholar 

  • Ruch, F., 1972. Principles and some applications of cytofluorometry In: G. L.Wied & G. F.Bahr (eds), Introduction to quantitative cytochemistry. II. Academic Press, New York & London.

    Google Scholar 

  • Ruiz, A., Fontdevila, A. & Wasserman, M., 1982. The evolutionary history of D. buzzatii. III. Cytogenetic relationships between two sibling species of the buzzatii cluster. Genetics 101: 503–518.

    Google Scholar 

  • Schäfer, U., 1978. Sterility in Drosophila hydei x D. neohydei hybrids. Genetica 49: 205–214.

    Google Scholar 

  • Stone, W. S., 1947. Gene replacement in the virillis group. Univ. Texas Publ. 4720: 161–166.

    Google Scholar 

  • Wasserman, M., 1962. Cytological studies of the repleta group of the genus Drosophila. V. The mulleri subgroup. Univ. Texas Publ. 6205: 85–118.

    Google Scholar 

  • Wasserman, M., 1982. The repleta species group. In: M.Ashburner, H. L.Carson & J. N.ThompsonJr. (eds), The genetics and biology of Drosophila. Vol. 3b. Academic Press, London.

    Google Scholar 

  • Wharton, L. T., 1942. Analysis of the repleta group of Drosophila. Univ. Texas Publ. 4228: 23–53.

    Google Scholar 

  • Wharton, L. T., 1943. Analysis of the metaphase and salivary chromosome morphology within the genus Drosophila. Univ. of Texas Publ. 4313: 282–319.

    Google Scholar 

  • White, M. J. D., 1973. Animal cytology and evolution. 3rd Ed. Cambridge Univ. Press. Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is paper No. VII in the series ‘The evolutionary history of Drosophila buzzatii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naveira, H., Hauschteck-Jungen, E. & Fontdevila, A. Spermiogenesis of inversion heterozygotes in backcross hybrids between Drosophila buzzatii and D. serido . Genetica 65, 205–214 (1984). https://doi.org/10.1007/BF00122907

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122907

Keywords

Navigation