Boundary-Layer Meteorology

, Volume 37, Issue 1–2, pp 129–148 | Cite as

A simple model of the atmospheric boundary layer; sensitivity to surface evaporation

  • I B Troen
  • L. Mahrt


A simple formulation of the boundary layer is developed for use in large-scale models and other situations where simplicity is required. The formulation is suited for use in models where some resolution is possible within the boundary layer, but where the resolution is insufficient for resolving the detailed boundary-layer structure and overlying capping inversion. Surface fluxes are represented in terms of similarity theory while turbulent diffusivities above the surface layer are formulated in terms of bulk similarity considerations and matching conditions at the top of the surface layer. The boundary-layer depth is expressed in terms of a bulk Richardson number which is modified to include the influence of thermals. Attention is devoted to the interrelationship between predicted boundary-layer growth, the turbulent diffusivity profile, ‘countergradient’ heat flux and truncation errors.

The model predicts growth of the convectively mixed layer reasonably well and is well-behaved in cases of weak surface heat flux and transitions between stable and unstable cases. The evolution of the modelled boundary layer is studied for different ratios of surface evaporation to potential evaporation. Typical variations of surface evaporation result in a much greater variation in boundary-layer depth than that caused by the choice of the boundary-layer depth formulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J. C., De Moor, G., Lacerrère, P., Therry, G., and Vachat, R.: 1978, ‘Modelling the 24 Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.Google Scholar
  2. André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’, J. Atmos. Sci. 39, 864–878.Google Scholar
  3. Anthes, R. A., Kuo, Y.-H., Benjamin, S. G., and Li, Y.-F.: 1982, ‘The Evolution of the Mesoscale Environment of Severe Local Storms: Preliminary Modeling Results’, J. Cli. Appl. Meteorol. 9, 1187–1213.Google Scholar
  4. Binkowski, F. S.: 1983, ‘A Simple Model for the Diurnal Variation of the Mixing Depth and Transport Flow’, Boundary-Layer Meteorol. 27, 217–236.Google Scholar
  5. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Boundary Layer’, J. Atmos. Sci. 8, 1427–1440.Google Scholar
  6. Busch, N. E., Chang, S. W., and Anthes, R. A.: 1976, ‘A Multi-Level Model of the Planetary Boundary Layer Suitable for Use with Mesoscale Dynamical Models’, J. Appl. Meteorol. 15, 909–919.Google Scholar
  7. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.Google Scholar
  8. Chang, S. W.: 1979, ‘An Efficient Parameterization of Convective and Nonconvective Planetary Boundary Layers for Use in Numerical Models’, J. Appl. Meteorol. 18, 1205–1215.Google Scholar
  9. Chang, S. W.: 1981, ‘Test of a Planetary Boundary Layer Parameterization Based on a Generalized Similarity Theory in Tropical Cyclone Models’, Mon. Wea. Rev. 109, 843–853.Google Scholar
  10. Clarke, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models of the Atmosphere’, Austr. Meteorol. Mag. 18, 51–73.Google Scholar
  11. Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. C., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, Tech. Paper No. 19, Div. Met. Phys., CSIRO, Australia.Google Scholar
  12. Deardorff, J. W.: 1966, ‘The Counter Gradient Heat Flux in the Lower Atmosphere and in the Laboratory’, J. Atmos. Sci. 23, 503–506.Google Scholar
  13. Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Mon. Wea. Rev. 100, 93–106.Google Scholar
  14. Deardorff, J. W.: 1973, ‘The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence’, J. Fluids Engr. 95, 429–438.Google Scholar
  15. Deardorff, J. W.: 1974, ‘Three-Dimensional Study of the Height and Mean Structure of the Planetary Boundary Layer’, Boundary-Layer Meteorol. 15, 1241–1251.Google Scholar
  16. Højstrup, J.: 1982, ‘Velocity Spectra in the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 39, 2239–2248.Google Scholar
  17. Holton, J. R., Wallace, J. M., and Joung, J. A.: 1971, ‘On Boundary Layer Dynamics and the ITCZ’, J. Atmos. Sci. 28, 275–280.Google Scholar
  18. Holtslag, A. A. M. and Van Ulden, A. P.: 1983, ‘A Simple Scheme for Daytime Estimates of Surface Fluxes from Routine Weather Data’, J. Cli. Appl. Meteorol. 22, 517–529.Google Scholar
  19. Holzworth, G. C.: 1964, ‘Estimates of Mean Maximum Mixing Depths in the Contiguous United States’, Mon. Wea. Rev. 92, 235–242.Google Scholar
  20. Louis, J.-F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.Google Scholar
  21. Mahrt, L.: 1981, ‘Modelling the Depth of the Stable Boundary Layer’, Boundary-Layer Meteorol. 21, 3–19.Google Scholar
  22. Mahrt, L. and Ek, M.: 1984, ‘The Influence of Atmospheric Stability on Potential Evaporation’, J. Cli. Appl. Meteorol. 23, 222–234.Google Scholar
  23. Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.Google Scholar
  24. Mailhôt, J., and Benoit, R.: 1982, ‘A Finite-Element Model of the Atmospheric Boundary Layer Suitable for Use with Numerical Weather Prediction Models’, J. Atmos. Sci. 39, 2249–2266.Google Scholar
  25. Manins, P. C.: 1982, ‘The Daytime Planetary Boundary Layer: A New Interpretation of Wangara Data’, Quart. J. R. Meteorol. Soc. 108, 689–705.Google Scholar
  26. McCumber, M. C. and Pielke, R. A.: 1981, ‘Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model Soil Layer’, J. Geophy. Res. 86, 9929–9938.Google Scholar
  27. Monteith, J. L.: 1981, ‘Presidential Address: Evaporation and Surface Temperature’, Quart. J. R. Meteorol. Soc. 107, 1–24.Google Scholar
  28. Pan, H.-L. and Mahrt, L.: 1986, ‘Interaction Between Soil Hydrology and Boundary-Layer Development’, Boundary-Layer Meteorol., submitted.Google Scholar
  29. Pielke, R. A. and Mahrer, Y.: 1975, ‘Technique to Represent the Heated Boundary Layer in Mesoscale Models with Coarse Vertical Resolution’, J. Atmos. Sci. 32, 2288–2309.Google Scholar
  30. Priestley, C. H. B. and Swinbank, W. C.: 1947, ‘Vertical Transport of Heat by Turbulence in the Atmosphere’, Proc. R. Soc. A189, 543–561.Google Scholar
  31. Smeda, M. S.: 1979, ‘A Bulk Model for the Atmospheric Planetary Boundary Layer’, Boundary-Layer Meteorol. 14, 411–428.Google Scholar
  32. Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.Google Scholar
  33. Therry, G. and Lacarrère, P.: 1983, ‘Improving the eddy kinetic energy model for planetary boundary layer description’, Boundary-Layer Meteorol. 25, 63–88.Google Scholar
  34. Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-Down and Bottom-Up Diffusion in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112.Google Scholar
  35. Yamada, T. and Mellor, G.: 1975, ‘A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atmos. Sci. 32, 2309–2329.Google Scholar
  36. Yu, T.-W.: 1977, ‘A Comparative Study on Parameterization of Vertical Turbulent Exchange Processes’, Mon. Wea. Rev. 105, 57–66.Google Scholar
  37. Zhang, D. and Anthes, R. A.: 1982, ‘A High-Resolution Model of the Planetary Boundary Layer — Sensitivity Tests and Comparisons with SESAME-70 Data’, J. Appl. Meteorol., 1594–1609.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • I B Troen
    • 1
  • L. Mahrt
    • 2
  1. 1.Risø National LaboratoryRoskildeDenmark
  2. 2.Department of Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations