Skip to main content
Log in

Frontal substructures within the planetary boundary layer

  • Editorial
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A two-dimensional mesoscale model, extended by a TKE closure for the subgrid-scale terms and coupled with a soil model, is used to investigate the role of the Planetary Boundary Layer (PBL) for the development and the substructures of two different types of cold fronts. The effects of turbulent friction, large-scale (geostrophic) forcing and the diurnal variation of the terms of the surface energy balance (SEB) equation on the frontal development are studied by 10 different model runs. The ageostrophic cross-frontal circulation in the lowest two kilometres of a cold front results from friction as well as from large-scale forcing. The first one dominates the PBL processes and causes a special boundary-layer structure, which becomes apparent through the existence of seven characteristic zones defined for the x-z cross sections of potential temperature. The arrangement of these characteristic zones depends on the sense of rotation of the frictionally induced part of the ageostrophic circulation and hence on the direction of the along-front jet within the boundary layer. The daytime increase of the terms of the SEB equation for a midlatitude midsummer case leads to a strong enhancement of the frictionally induced cross-frontal circulation. The arrangement of the seven characteristic zones, however, is approximately conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A. and Warner, T. T.: 1978, ‘Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometeorological Studies’, Mon. Weat. Rev. 106, 1045–1078.

    Google Scholar 

  • Arritt, R. W.: 1987, ‘The Effect of Water Surface Temperature on Lake-Breezes and Thermal Internal Boundary Layers’, Boundary-Layer Meteorol. 40, 101–125.

    Google Scholar 

  • Baldwin, D., Hsie, E. Y., and Anthes, R. A.: 1984, ‘Diagnostic Studies of a Two-Dimensional Simulation of Frontogenesis in a Moist Atmosphere’, J. Atmos. Sci. 41, 2686–2700.

    Google Scholar 

  • Becker, A.: 1990, Initialisierung der Querzirkulation für das Bonner-Front-Skala-Modell, Diploma thesis, Meteorologisches Institut der Universität Bonn, 128 pp.

  • Becker, A.: 1995, ‘Die Rolle der Turbulenz und des Bodens bei frontogenetischen Prozessen’, Berichte des Deutschen Wetterdienstes 185, 163 pp.

  • Bénard, P., Redelsperger, J.-L., and Lafore, J.-P.: 1992, ‘Nonhydrostatic Simulation of Frontogenesis in a Moist Atmosphere. Part I: General Description and Narrow Rainbands’, J. Atmos. Sci. 49, 2200–2217.

    Google Scholar 

  • Bennetts, D. A. and Hoskins, B. J.: 1979, ‘Conditional Symmetric Instability — A Possible Explanation of Frontal Rainbands’, Quart. J. Roy. Meteorol. Soc. 105, 945–962.

    Google Scholar 

  • Bergeron, T.: 1928, ‘Über die dreidimensional verknüpfende Wetteranalyse, Teil I’, Geof. Publ. 5(6), 1–111.

    Google Scholar 

  • Berggren, R.: 1952, ‘The Distribution of Temperature and Wind Connected with Active Tropical Air in Higher Troposphere and Some Remarks Concerning Clear Air Turbulence at High Altitude’, Tellus 4, 43–53.

    Google Scholar 

  • Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.

    Google Scholar 

  • Bond, N. A. and Fleagle, R. G.: 1985, ‘Structure of a Cold Front over the Ocean’, Quart. J. Roy. Meteorol. Soc. 111, 739–759.

    Google Scholar 

  • Bond, N. A. and Fleagle, R. G.: 1988, ‘Prefrontal and Postfrontal Boundary Layer Processes over the Ocean’, Mon. Weat. Rev. 116, 1257–1273.

    Google Scholar 

  • Bougeault, P.: 1983, ‘A Non-Reflective Upper Boundary Condition for Limited Height Hydrostatic Models’, Mon. Weat. Rev. 111, 420–429.

    Google Scholar 

  • Browning, K. A.: 1985, ‘Conceptual Models of Precipitation Systems’, Met. Mag. 114, 293–319.

    Google Scholar 

  • Browning, K. A. and Monk, G. A.: 1982, ‘A Simple Model for the Synoptic Analysis of Cold Fronts’, Quart. J. Roy. Meteorol. Soc. 108, 435–452.

    Google Scholar 

  • Dunst, M. and Rhodin, A.: 1990, ‘On the Influence of Frictional Effects on Surface Fronts’, Beitr. Phys. Atmosph. 63, 232–242.

    Google Scholar 

  • Eliassen, A.: 1962, ‘On the Vertical Circulation in Frontal Zones’, Geof. Publ. 24, 147–160.

    Google Scholar 

  • Ewenz, C. M.: 1993, ‘Die Rolle der Feuchte bei frontogenetischen Prozessen’, Berichte des Deutschen Wetterdienstes 187, 186 pp.

  • Fischer, C. and Lalaurette, F.: 1995, ‘Mesoscale Circulations in Realistic Fronts. II: Frontogenetically Forced Basic States’, Quart. J. Roy. Meteorol. Soc. 121, 1285–1321.

    Google Scholar 

  • Frank, H. P.: 1994, ‘Boundary Layer Structure in two Fronts Passing a Tower’, Meteorol. Atmos. Phys. 53, 95–109.

    Google Scholar 

  • Garratt, J. R. and Physick, W. L.: 1986, ‘Numerical Study of Atmospheric Gravity Currents. I: Simulations and Observations of Cold Fronts’, Beitr. Phys. Atmosph. 59, 282–300.

    Google Scholar 

  • Garratt, J. R., Physick, W. L., Smith, R. K., and Troup, A. J.: 1985, ‘The Australian Summertime Cool Change. Part II: Mesoscale aspects’, Mon. Weat. Rev. 113, 202–223.

    Google Scholar 

  • Garratt, J. R., Howells, P. A. C., and Kowalczyk, E.: 1989, ‘The Behavior of Dry Cold Fronts Travelling Along a Coastline’, Mon. Weat. Rev. 117, 1208–1220.

    Google Scholar 

  • Geiger, R.: 1965, The Clim. near the Ground, Harvard University Press, Cambridge, Mass., 611 pp.

    Google Scholar 

  • Haase, S. P.: 1991, ‘Numerical Simulation of the Bore-Like Cold Front of 8 October 1987 in Southern Germany’, Tellus 43A, 97–105.

    Google Scholar 

  • Hedley, M. and Yau, M. K.: 1988, ‘Radiation Boundary Conditions in Numerical Modelling’, Mon. Weat. Rev. 116, 1721–1736.

    Google Scholar 

  • Heimann, D.: 1994, ‘Frictional Effects on Cold Fronts: Geometric Considerations’, Beitr. Phys. Atmosph. 67, 97–102.

    Google Scholar 

  • Hennemuth, B., Rhodin, A., and Brümmer, B.: 1992, ‘The Fog Front of 25 May 1989 — A Gravity Flow?’, Meteorol. Atmos. Phys. 48, 273–292.

    Google Scholar 

  • Hines, K. M. and Mechoso, C. R.: 1993, ‘Influence of Surface Drag on the Evolution of Fronts’, Mon. Weat. Rev. 121, 175.

    Google Scholar 

  • Hoeber, H.: 1974, ‘The Boundary-Layer Subprogram for GATE’, Bull. Amer. Meteorol. Soc. 55, 731–734.

    Google Scholar 

  • Hoinka, K. P., Hagen, M., Volkert, H., and Heimann, D.: 1990, ‘On the Influence of the Alps on a Cold Front’, Tellus 42A, 140–164.

    Google Scholar 

  • Hoskins, B. J. and Bretherton, F. P.: 1972, ‘Atmospheric Frontogenesis Models: Mathematical Formulation and Solution’, J. Atmos. Sci. 29, 11–37.

    Google Scholar 

  • Hoskins, B. J., Draghici, I. and Davies, H. C.: 1978, ‘A New Look at the Ω-equation’, Quart. J. Roy. Meteorol. Soc. 106, 707–719.

    Google Scholar 

  • Hsie, E.-Y., Anthes, R. A., and Keyser, D.: 1984, ‘Numerical Simulation of Frontogenesis in a Moist Atmosphere’, J. Atmos. Sci. 41, 2581–2594.

    Google Scholar 

  • Huang, C.-Y. and Raman, S.: 1991, ‘Numerical Simulation of January 28 Cold Air Outbreak during GALE. Part II: The Mesoscale Circulation and Marine Boundary Layer’, Boundary-Layer Meteorol. 56, 51–91.

    Google Scholar 

  • Keuler, K., Kerkmann, J., Kraus, H., and Schaller, E.: 1992, ‘Orographical Modification and Large Scale Forcing of a Cold Front’, Meteorol. Atmos. Phys. 48, 105–130.

    Google Scholar 

  • Keyser, D. and Anthes, R. A.: 1982, ‘The Influence of Planetary Boundary Layer Physics on Frontal Structure in the Hoskins-Bretherton Horizontal Shear Model’, J. Atmos. Sci. 39, 1783–1802.

    Google Scholar 

  • Keyser, D. and Pecnick, M. J.: 1985, ‘Diagnosis of Ageostrophic Circulations in a Two-Dimensional Primitive Equation Model of Frontogenesis’, J. Atmos. Sci. 42, 1283–1305.

    Google Scholar 

  • Klemp, J. B. and Duran, D. R.: 1983, ‘An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models’, Mon. Weat. Rev. 111, 430–444.

    Google Scholar 

  • Mahfouf, J.-F., Richard, E., and Mascart, P.: 1987, ‘The Influence of Soil and Vegetation on the Development of Mesoscale Circulations’, J. Clim. Appl. Meteorol. 26, 1483–1495.

    Google Scholar 

  • Monin, A. S. and Obukhov, M. A.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmosphere near the Ground’, Trudy Akad. Nauk., SSSR Geofiz. Inst. 24(151), 163–187.

    Google Scholar 

  • Orlanski, I. and Ross, B. B.: 1977, ‘The Circulation Associated with a Cold Front, Part I: Dry Case’, J. Atmos. Sci. 34, 1619–1633.

    Google Scholar 

  • Orlanski, I., Ross, B. B., Polinsky, L., Shaginaw, R.: 1985, ‘Advances in the Theory of Atmospheric Fronts’, Adv. Geophys. 28b, 223–252.

    Google Scholar 

  • Reeder, M. J.: 1986, ‘The Interaction of a Surface Cold Front with a Prefrontal Thermodynamically Well-Mixed Boundary Layer’, Aust. Meteorol. Mag. 34, 137–148.

    Google Scholar 

  • Reeder, M. J. and Smith, R. K.: 1986, ‘A Comparison between Frontogenesis in the Two-Dimensional Eady Model of Baroclinic Instability and Summertime Cold Fronts in the Australian Region’, Quart. J. Roy. Meteorol. Soc. 112, 293–313.

    Google Scholar 

  • Reeder, M. J. and Smith, R. K.: 1987, ‘A Study of Frontal Dynamics with Application of the Australian Summertime “cool change”’, J. Atmos. Sci. 44, 687–705.

    Google Scholar 

  • Rhodin, A.: 1991, ‘Kaltfronten unter dem Einfluβ der Reibung in der Grenzschicht und ihre Modifikation bei unterschiedlicher Bodenrauhigkeit und Bodentemperatur. Numerische Simulationen’, Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg 15, 125 pp.

  • Rhodin, A.: 1995, ‘Interaction of a Cold Front with a Sea-Breeze Front: Numerical Simulations’, Tellus 47A, 403–420.

    Google Scholar 

  • Ross, B. B. and Orlanski, I.: 1978, ‘The Circulation Associated with a Cold Front. Part II: Moist Case’, J. Atmos. Sci. 35, 445–465.

    Google Scholar 

  • Ryan, B. F. and Wilson, K. J.: 1985, ‘The Australian Summertime Cool Change. Part III: Subsynoptic and Mesoscale Model’, Mon. Weat. Rev. 113, 224–240.

    Google Scholar 

  • Ryan, B. F., Wilson, K. J., Garratt, J. R., and Smith, R. K.: 1985, ‘Cold Fronts Research Programme: Progress, Future Plans and Research Directions’, Bull. Amer. Meteorol. Soc. 66, 1116–1122.

    Google Scholar 

  • Savijärvi, H.: 1992, ‘On Surface Temperature and Moisture Prediction in Atmospheric Models’, Beitr. Phys. Atmosph. 65, 281–292.

    Google Scholar 

  • Sawyer, J. S.: 1956, ‘The Vertical Circulation at Meteorological Fronts and its Relation to Frontogenesis’, Proc. Roy. Soc., London A234, 346–362.

    Google Scholar 

  • Shapiro, R.: 1971, ‘The Use of a Linear Filtering as a Parameterization of Atmospheric Diffusion’, J. Atmos. Sci. 28, 523–531.

    Google Scholar 

  • Smith, R. K. and Reeder, M. J.: 1988, ‘On the Movement and Low-Level Structure of Cold Fronts’, Mon. Weat. Rev. 116, 1927–1944.

    Google Scholar 

  • Smith, R. K., Ryan, B. P., Troup, A. P. and Wilson, K. J.: 1982, ‘Cold Front Research: The Australian Summertime “cool change”’, Bull. Amer. Meteorol. Soc. 63, 1028–1034.

    Google Scholar 

  • Taylor, P. A., Salmon, J. R., and Stewart, R. E.: 1993, ‘Mesoscale Observations of Surface Fronts and Low Pressure Centres in Canadian East Coast Winter Storms’, Boundary-Layer Meteorol. 64, 15–54.

    Google Scholar 

  • Thorpe, A. J. and Clough, S. A.: 1991, ‘Mesoscale Dynamics of Cold Fronts: Structures Described by Drop Soundings in FRONTS 87’, Quart. J. Roy. Meteorol. Soc. 117, 903–941.

    Google Scholar 

  • Wallace, J. M. and Hobbs, P. V.: 1977, Atmospheric Science: An Introductory Survey, Academic Press, New York, 467 pp.

    Google Scholar 

  • Williams, R. T.: 1967, ‘Atmospheric Frontogenesis: A Numerical Experiment’, J. Atmos. Sci. 24, 627–411.

    Google Scholar 

  • Williams, R. T.: 1974, ‘Numerical Simulations of Steady State Fronts’, J. Atmos. Sci. 31, 1286–1296.

    Google Scholar 

  • Wilson, K. J. and Stern, H.: 1985, ‘The Australian Summertime Cool Change. Part I: Synoptic and Subsynoptic Scale Aspects’, Mon. Weat. Rev. 113, 177–201.

    Google Scholar 

  • Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q 2l Turbulence Closure Model’, J. Atmos. Sci. 40, 91–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Kraus, H. & Ewenz, C.M. Frontal substructures within the planetary boundary layer. Boundary-Layer Meteorol 78, 165–190 (1996). https://doi.org/10.1007/BF00122491

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122491

Keywords

Navigation