Skip to main content
Log in

Transport rate of drifting snow and the mean wind speed profile

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Transport rates, measured by weighing snow blown into a filter fabric trap, were greater over hard snow or ice than for the same wind speed over soft, fresh snow surfaces. Analysis of wind speed profiles from nine blizzards showed that friction between moving particles and the surface was less, and particle speeds were greater over hard surfaces. Transport rates at a given wind speed increased rapidly as aerodynamic roughness decreased in the rough-smooth transition region. Bagnold's theory for bed load transport provided a useful framework for the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, J. R. and Francis, J. R. D.: 1977, ‘Saltation and Suspension Trajectories of Solid Grains in a Water Stream’, Philos. Trans. Roy. Soc. Lond. A 284, 225–254.

    Google Scholar 

  • Bagnold, R. A.: 1941, ‘The Physics of Blown Sand and Desert Dunes’, Methuen, London, 265 pp.

    Google Scholar 

  • Bagnold, R. A.: 1956, ‘The Flow of Cohesionless Grains in Fluids’, Philos. Trans. Roy. Soc. Lond. A 249, 235–297.

    Google Scholar 

  • Bagnold, R. A.: 1966, ‘An Approach to the Sediment Transport Problem From General Physics’, U.S. Geol. Surv. Prof. Pap. 411, 37 pp.

  • Bagnold, R. A.: 1973, ‘The Nature of Saltation and of ‘Bed-load’ Transport in Water’, Proc. Roy. Soc. Lond. A 332, 472–504.

    Google Scholar 

  • Bridge, J. S. and Dominic, D. F.: 1984, ‘Bed Load Grain Velocities and Sediment Transport Rates’, Water Resources Res. 20(4), 476–490.

    Google Scholar 

  • Brodkey, R. S., Wallace, J. M., and Eckelmann, H.: 1974, ‘Some Properties of Truncated Turbulence Signals in Bounded Shear Flows’, J. Fluid Mech. 63, 209–224.

    Google Scholar 

  • Budd, W. W.: 1966, ‘The Drifting of Non-uniform Snow Particles’, in M. Rubin (ed.), Studies in Antarctic Meteorol., American Geophys. Union, Antarctic Res. Ser. 9, pp. 59–70.

  • Budd, W. F., Dingle, R., and Radok, U.: 1966, ‘The Byrd Snow Drift Project: Outline and Basic Results’, in M. Rubin (ed.), Studies in Antarctic Meteorol., American Geophys. Union, Antarctic Res. Ser. 9, pp. 71–134.

  • Businger, J.: 1965, ‘Eddy Diffusion and Settling Speed in Blown Snow’, J. Geophys. Res. 70(14), 3307–3313.

    Google Scholar 

  • Chepil, W. S.: 1959, ‘Equilibrium of Soil Grains at the Threshold of Movement by Wind’, Proceedings Soil Science Society of America 23(6), pp. 422–428.

    Google Scholar 

  • Dingle, W. R. J. and Radok, U.: 1961, ‘Antarctic Snow Drift and Mass Transport’, Intern. Assoc. Sci. Hydrology Pub. 55, 77–87.

    Google Scholar 

  • Dyunin, A. K.: 1967, ‘Fundamentals of the Mechanics of Snow Storms’, in H. Oura (ed.), Physics of Snow and Ice, Vol. I, part 2, Institute of Low Temperature Science, Sapporo, Japan, pp. 1065–1073.

    Google Scholar 

  • Dyunin, A. K. and Kotlyakov, V. M.: 1980, ‘Redistribution of Snow in the Mountains under the Effect of Heavy Snow-storms’, Cold Reg. Sci. Tech. 3, 287–297.

    Google Scholar 

  • Jairell, R. L., Tabler, R. D., and Schmidt, R. A.: 1984, ‘Portable Ten-meter Instrument Mast’, Proc. Western Snow Conference 52, pp. 168–171.

    Google Scholar 

  • Kikuchi, T.: 1981, ‘A Wind Tunnel Study of the Aerodynamic Roughness Associated with Drifting Snow’, Cold Reg. Sci. Tech. 5, 107–118.

    Google Scholar 

  • Kobayashi, D.: 1972, ‘Studies of Snow Transport in Low-level Drifting Snow’, Contributions from the Institute of Low Temperature Science, Series A, No. 24, pp. 1–58.

  • Leeder, M. R.: 1983, ‘On the Dynamics of Sediment Suspension by Residual Reynolds Stresses-Confirmation of Bagnold's Theory’, Sedimentol. 30, 485–491.

    Google Scholar 

  • Martinelli M., and Ozment, A. D.: (in press), ‘Some Physical Properties of Natural Snow Surfaces’, Cold Reg. Sci. Tech.

  • Offen, G. R. and Kline, S. J.: 1975, ‘A Proposed Model for the Bursting Process in Turbulent Boundary Layers’, J. Fluid Mech. 70, 209–228.

    Google Scholar 

  • Oura, H., Ishida, T., Kobayashi, D., Kobayashi, S., and Yamada, T.: 1967, ‘Studies on Blowing Snow II’, in H. Oura (ed.), Physics of Snow and Ice, Vol. I, part 2, Institute of Low Temperature Science, Sapporo, Japan, pp. 1099–1117.

    Google Scholar 

  • Owen, P. R.: 1964, ‘Saltation of Uniform Grains in Air’, J. Fluid Mech. 20, 225–242.

    Google Scholar 

  • Radok, U.: 1968, ‘Deposition and Erosion of Snow by the Wind’, U.S. Army Gold Regions Research and Engineering Laboratory, Res. Rep. 230, 23 pp.

  • Radok, U.: 1977, ‘Snow Drift’, J. Glaciol. 19(81), 123–129.

    Google Scholar 

  • Schmidt, R. A.: 1972, ‘Sublimation of Wind-transported Snow-A Model’, USDA Forest Service Research Paper RM-90, 24 pp. (Available from Rocky Mountain Forest and Range Experiment Station, 240 W. Prospect Street, Fort Collins, Colorado 80526.)

  • Schmidt, R. A.: 1977, ‘A System That Measures Blowing Snow’, USDA Forest Service Research Paper RM-194, 80 pp.

  • Schmidt, R. A.: 1980, ‘Threshold Windspeeds and Elastic Impact in Snow Transport’, J. Glaciol. 26(94), 453–467.

    Google Scholar 

  • Schmidt, R. A.: 1981, ‘Estimates of Threshold Windspeed from Particle Sizes in Blowing Snow’, Cold Reg. Sci. Tech. 4, 187–193.

    Google Scholar 

  • Schmidt, R. A.: 1982a, ‘Properties of Blowing Snow’, Rev. Geophysics and Space Physics 20(1), 39–44.

    Google Scholar 

  • Schmidt, R. A.: 1982b, ‘Vertical Profiles of Wind Speed, Snow Concentration, and Humidity in Blowing Snow’, Boundary-Layer Meteorol. 23, 223–246.

    Google Scholar 

  • Schmidt, R. A., Tabler, R. D. and Jairell, R. L.: 1982, ‘A New Device For Sampling Mass Flux of Blowing Snow’, Proc. Western Snow Conference 50, pp. 102–111.

    Google Scholar 

  • Schmidt, R. A., Meister, R. and Gubler, H.: 1984, ‘Comparison of Snow Drifting Measurements at an Alpine Ridge Crest’, Cold Reg. Sci. Tech. 9, 131–141.

    Google Scholar 

  • Sumer, B. M. and Deigaard, R.: 1981, ‘Particle Motions Near the Bottom in Turbulent Flow in an Open Channel. Part 2’, J. Fluid Mech. 109, 311–337.

    Google Scholar 

  • Tabler, R. D.: 1980, ‘Self-similarity of Wind Profiles in Blowing Snow Allows Outdoor Modeling’, J. Glaciol. 26(94), 421–433.

    Google Scholar 

  • Tabler, R. D. and Schmidt, R. A.: 1972, ‘Weather Conditions that Determine Snow Transport Distances at a Site in Wyoming’, Proc. UNESCO/WMO/IAHS Int. Symp. on Role of Snow and Ice in Hydrology (Banff, Alberta, Canada), pp. 118–127.

  • Takeuchi, M.: 1980, ‘Vertical Profiles and Horizontal Increase of Drift Snow Transport’, J. Glaciol. 26(94), 481–492.

    Google Scholar 

  • Thom, H.: 1958, ‘A Note on the Gamma Distribution’, Monthly Weather Rev. 86(4), 117–122.

    Google Scholar 

  • White, B., and Schulz, J.: 1977, ‘Magnus Effect in Saltation’, J. Fluid Mech. 81(3), 497–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.A. Transport rate of drifting snow and the mean wind speed profile. Boundary-Layer Meteorol 34, 213–241 (1986). https://doi.org/10.1007/BF00122380

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122380

Keywords

Navigation