Skip to main content
Log in

Analysis of a centric shift in the S11 chromosome of Aiolopus strepens (Orthoptera: Acrididae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A centric shift in the S11 chromosome of Aiolopus strepens, previously described as a pericentric inversion (Cabrero & Camacho, 1982), was analyzed by using the C-banding procedure. The location of breakage points as well as the posibilities of pericentric inversion and three-break transposition are discussed. The relationship between C-bands and NOR location as revealed by both silver staining and a double procedure Ag-NOR C-banding is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arana, P., Santos, J. L., Henriques-Gil, N. & Giráldez, R., 1982. Centromere coorientation in a spontaneous translocation heterozygote of Euchorthippus pulvinatus gallicus (Acrididae, Orthoptera). Genetica 58: 81–84.

    Google Scholar 

  • Cabrero, J. & Camacho, J. P. M., 1982. Pericentric inversion polymorphism in Aiolopus strepens (Orthoptera: Acrididae): Effects on chiasma formation. Caryologia: 35: 411–424.

    Google Scholar 

  • Carothers, E. E., 1917. The segregation and recombination of homologous chromosomes as found in two genera of Acrididae (Orthoptera). J. Morphol. 28: 445–494.

    Google Scholar 

  • Coleman, L. C., 1948. The cytology of some western species of Trimerotropis (Acrididae). Genetics 33: 519–528.

    Google Scholar 

  • Dev, V. G., Miller, D. A., Charen, J. & Miller, O. J., 1974. Translocation of centromeric heterochromatin in the T (10; 13) 199H stock of Mus musculus and localization of chromosome break points. Cytogenet. Cell Genet. 13: 256–267.

    Google Scholar 

  • Dobel, P., Rieger, R. & Michaelis, A., 1973. The Giemsa banding patterns of the standard and fourd reconstructed karyotypes of Vicia faba. Chromosoma 43: 409–422.

    Google Scholar 

  • Fernández-Piqueras, J., Rodríguez Campos, A., Sentis Castaño, C. & Rjo García, E., 1983. Sex chromosome evolution in the polytypic species Pycnogaster cucullata. Heredity 50: 217–223.

    Google Scholar 

  • Fletcher, H. L. & Hewitt, G. M., 1978. Non-homologous synaptonemal complex formation in a heteromorphic bivalent in Keyacris scurra (Morabinae, Orthoptera). Chromosoma 65: 271–281.

    Google Scholar 

  • Gosálvez, J., López-Fernández, C. & García-Lafuente, R., 1982. A spontaneous translocation heterozygote involving centromere regions in Gomphocerus sibiricus (L.) (Orthoptera: Acrididae). Chromosoma 86: 49–57.

    Google Scholar 

  • Harada, M. & Yosida, T. H., 1978. Karyological study of four japanese Myotis bats (Chiroptera, Mammalia). Chromosoma 65: 283–291.

    Google Scholar 

  • Hateh, F. T., Bodner, A. J., Mazrimas, J. A. & Moor, D. H., 1976. II. Satelite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variation in kangaroo rats (genus Dipodomis). Chromosoma 58: 155–168.

    Google Scholar 

  • Hewitt, G. M., 1979. Grasshoppers and crickets. Animal Cytogenetics III, Insecta 1, Orthoptera. Borntraeger, Berlin-Stuttgart.

    Google Scholar 

  • Jackson, R. C., 1973. Chromosomal evolution in Hapiopappus gracilis: A centric transposition race. Evolution 27: 243–256.

    Google Scholar 

  • John, B. & Hewitt, G. M., 1965. The B chromosome system of Myrmeleotettix maculatus (Thunb.) I. The mechanics. Chromosoma 16: 548–578.

    Google Scholar 

  • John, B. & Hewitt, G. M., 1968. Patterns and pathways of chromosome evolution within the Orthoptera. Chromosoma 25: 40–74.

    Google Scholar 

  • John, G. & King, M., 1977. Heterochromatin variation in Cryptobothrus chrysophorus. II. Patterns of C-banding. Chromosoma 65: 59–79.

    Google Scholar 

  • Kaufmann, B. P., 1946. Organization of the chromosome I. Break distribution and chromosome recombination in Drosophila melanogaster. J. exp. Zool. 102: 293–320.

    Google Scholar 

  • Lee, C. S., 1975. A possible role of repetitious DNA in recombinatory joining during chromosome rearrangement in Drosophila melanogaster. Genetics 79: 467–470.

    Google Scholar 

  • McClintock, B., 1939. The behaviour in successive nuclear divisions of a chromosome broken at meiosis. Proc. natn. Acad. Sci. U.S.A. 25: 405–416.

    Google Scholar 

  • Muller, H. J. & Herskowitz, I. H., 1954. Concerning the healing of chromosome ends produced by breakage in Drosphila melanogaster. Am. Nat. 88: 177–208.

    Google Scholar 

  • Nankivell, R. N., 1967. A terminal association of two pericentric inversions in first metaphase cells of the Australian grasshopper Austroicetes interioris (Acrididae). Chromosoma 22: 42–68.

    Google Scholar 

  • Rothfels, K. H. & Mason, G. F., 1975. Achiasmate meiosis and centromere shift in Eusimulium aureum (Diptera: Simulidae). Chromosoma 51: 111–124.

    Google Scholar 

  • Rufas, J. S., Oosálvez, J., López-Fernández, C. & Cardoso, H., 1983. Complete dependence between Ag NORs C-Positive heterochromatin revealed by simultaneus Ag-NOR C-banding method. Cell Biol. Int. Repts 7: 275–281.

    Google Scholar 

  • Santos, J. L., Arana, P. & Giráldez, R., 1983. Chromosome C-banding patterns in Spanish Acridoidae. Genetica 61: 65–74.

    Google Scholar 

  • Shaw, D. D., Webb, G. C. & Wilkinson, P., 1976. Population cytogenetics of the genus Caledia (Orthoptera: Acridinae). II Variation in the pattern of C-banding. Chromosoma 56: 169–190.

    Google Scholar 

  • Vaio, E. S.de, Goñi, G. & Rey, C., 1979. Chromosome polymorphism in populations of the grasshopper Trimerotropis pallidipennis from Southern Argentina. Chromosoma 71: 371–386.

    Google Scholar 

  • Wahrman, J., Richler, C., Neufeld, E. & Friedman, A., 1983. The origin of multiple sex chromosomes in the gerbil Gerbillus gerbillus (Rodentia: Gerbillinae). Cytogenet. Cell Genet. 35: 161–180.

    Google Scholar 

  • Wenrich, D. H., 1917. Synapsis and chromosome organization in Chorthippus (Stenobothrus) curtipennis and Trimerotropis suffusa (Orthoptera). J. Morphol. 29: 471–511.

    Google Scholar 

  • Weissman, D. B., 1976. Geographical variability in the pericentric inversion system of the grasshopper Trimerotropis pseudofasciata. Chromosoma 55: 325–347.

    Google Scholar 

  • White, M. J. D., 1963. Cytogenetics of the grasshopper Moraba scurra. VIII. A complex spontaneous translocation. Chromosoma 14: 140–145.

    Google Scholar 

  • White, M. J. D., 1969. Chromosomal rearrangements and speciation in animals. Ann. Rev. Genetics 3: 75–98.

    Google Scholar 

  • White, M. J. D., 1973. Animal Cytology and Evolution, 3rd edit. London: Cambridge University Press.

    Google Scholar 

  • Yosida, T. H. & Sagai, T., 1975. Variation of C-bands in the chromosomes of several subspecies of Rattus rattus. Chromosoma 50: 283–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suja, J.A., Camacho, J.P.M., Cabrero, J. et al. Analysis of a centric shift in the S11 chromosome of Aiolopus strepens (Orthoptera: Acrididae). Genetica 70, 211–216 (1986). https://doi.org/10.1007/BF00122188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122188

Keywords

Navigation