Skip to main content
Log in

Properties of spatial temperature derivatives in the atmospheric surface layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A pair of parallel cold wires separated in either the vertical or lateral direction was used to obtain the three components θx, θy, θz of the temperature derivative in the streamwise, lateral and vertical directions, respectively. The average absolute skewness values of θx and θz are nonzero and approximately equal, while the skewness of θy is approximately zero. These results appear to be consistent with the presence of a large, three-dimensional organised structure in the surface layer. There is an apparent low-frequency contamination in the spectral density of θy and θz due mainly to small errors in estimating the sensitivity of the cold wires. The temperature derivatives were high-pass filtered, the filter being set to remove possible contributions from the large structure and to minimise low-frequency sensitivity contamination. The filtered rms ratios \~θx/\~θy and \~θx/\~θz were in the range 0.7 to 0.9, a result in qualitative agreement with that obtained in the laboratory boundary layer by Sreenivasan et al. (1977). The skewness of filtered θx or θz is negligible, consistent with local isotropy of small-scale temperature fluctuations and in support of the high wavenumber spectral isotropy discussed in Antonia and Chambers (1978).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Chambers, A. J.: 1978, ‘Spectra of Temperature Derivatives in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 15, 347–355.

    Google Scholar 

  • Antonia, R. A., Danh, H. Q., and Prabhu, A.: 1977, ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Heat Flux’, J. Fluid Mech. 80, 153–177.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1978, ‘Temperature Ramps in the Atmospheric Surface Layer’, Report No. 16, Dept. of Mechanical Engineering, University of Newcastle. To appear in J. Atmos. Sci.

  • Batchelor, G. K.: 1960, The Theory of Homogeneous Turbulence, Cambridge University Press.

  • Boston, N. E. J. and Burling, R. W.: 1972, ‘An Investigation of High Wave-Number Temperature and Velocity Spectra in Air’, J. Fluid Mech. 55, 473–492.

    Google Scholar 

  • Brown, G. L. and Thomas, A. S.: 1977, ‘Large Structure in a Turbulent Boundary Layer’, Phys. Fluids 20, S243-S252.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Champagne, F. H., Friehe, C. A., LaRue, J. C., and Wyngaard, J. C.: 1977, ‘Flux Measurements, Flux Estimation Techniques, and Fine-Scale Turbulence Measurements in the Unstable Layer Over Land’, J. Atmos. Sci. 34, 515–530.

    Google Scholar 

  • Clay, J. P.: 1973, ‘Turbulent Mixing of Temperature in Water, Air and Mercury’, PhD Thesis, University of California, San Diego.

    Google Scholar 

  • Comte-Bellot, G.: 1965, ‘Ecoulement Turbulent entre deux Parois Parallèles’, Publications Scientifiques et Techniques du Ministère

  • Fairall, C. W. and Schacher, G.: 1977, ‘Frequency Response of Hot Wires Used for Atmospheric Turbulence Measurements in the Marine Environment’, Rev. Sci. Instrum. 48, 12–17.

    Google Scholar 

  • Fulachier, L.: 1972, ‘Contribution à l'étude des Analogies des Champs Dynamique et Thermique dans une Couche Limite Turbulente. Effet de l'Aspiration’, Thèse Docteur ès Sciences, Université de Provence.

  • Freytag, C.: 1978, ‘Statistical Properties of Energy Dissipation’, Boundary-Layer Meteorol. 14, 183–198.

    Google Scholar 

  • Gibson, C. H., Friehe, C. A., and McConnell, S. O.: 1977, ‘Structure of Sheared Turbulent Fields’, Phys. Fluids 20, S156-S167.

    Google Scholar 

  • Head, M. R. and Bandyopadhyay, P.: 1978, ‘Combined Flow Visualization and Hot-Wire Measurements in Turbulent Boundary Layers’, in Coherent Structure of Turbulent Boundary Layers (eds. C. R. Smith and D. E. Abbott), AFOSR/Lehigh University Workshop, 98–129.

  • Hill, R. J.: 1978, ‘Models of the Scalar Spectrum for Turbulent Advection’, J. Fluid Mech. 88, 541–562.

    Google Scholar 

  • LaRue, J. C., Deaton, T., and Gibson, C. H.: 1975, ‘Measurement of High Frequency Turbulent Temperature’, Rev. Sci. Instrum. 46, 757–764.

    Google Scholar 

  • Laufer, J.: 1975, ‘New Trends in Experimental Turbulence Research’, Ann. Rev. Fluid Mech. 7, 307–326.

    Google Scholar 

  • Mestayer, P. and Chambaud, P.: 1979, ‘Some Limitations to Measurements of Turbulence Micro-Structure with Hot- and Cold-Wires’. Boundary-Layer Meteorol. 16, 311–329.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics: Mechanics of Turbulence, 2, M.I.T. Press.

  • Schacher, G. and Fairall, C. W.: 1976, ‘Use of Resistance Wires for Atmospheric Turbulence Measurements in the Marine Environment’, Rev.-Sci. Instrum. 47, 703–707.

    Google Scholar 

  • Schmitt, K. F., Friehe, C. A., and Gibson, C. H.: 1978, ‘Humidity Sensitivity of Atmospheric Temperature Sensors by Salt Contamination’, J. Phys. Ocean. 8, 151–161.

    Google Scholar 

  • Sreenivasan, K. R., Antonia, R. A., and Danh, H. Q.: 1977, ‘Temperature Dissipation Fluctuations in a Turbulent Boundary Layer’, Phys. Fluids 20, 1238–1249.

    Google Scholar 

  • Sreenivasan, K. R. and Antonia, R. A.: 1977, ‘Skewness of Temperature Derivatives in Turbulent Shear Flows’, Phys. Fluids 20, 1986–1988.

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press.

  • Tsvang, L. R.: 1977, ‘International Turbulence Comparison Experiment 1976’, Boundary-Layer Meteorol. 12, 373–374.

    Google Scholar 

  • Van Atta, C. W.: 1977, ‘Second-Order Spectral Local Isotropy in Turbulent Scalar Fields’, J. Fluid Mech. 80, 609–615.

    Google Scholar 

  • Verollet, E.: 1977, ‘Etude d'une Couche Limite Turbulente avec Aspiration et Chauffage à la Paroi’, Report CEA-R-4872, Centre d'Etudes Nucléaires de Saclay.

  • Williams, R. M. and Paulson, C. A.: 1977, ‘Microscale Temperature and Velocity Spectra in the Atmospheric Boundary Layer’, J. Fluid Mech. 83, 547–567.

    Google Scholar 

  • Wyngaard, J. C.: 1969, ‘Spatial Resolution of the Vorticity Meter and Other Hot-Wire Arrays’, J. Sci. Inst. (J. Physics E) 2, 983–987.

    Google Scholar 

  • Wyngaard, J. C. and Tennekes, H.: 1970, ‘Measurements of the Small-Scale Structure of Turbulence at Moderate Reynolds Numbers’, Phys. Fluids 13, 1962–1969.

    Google Scholar 

  • Wyngaard, J. C.: 1971, ‘Spatial Resolution of a Resistance Wire Temperature Sensor’, Phys. Fluids 14, 2052–2054.

    Google Scholar 

  • Wyngaard, J. C. and Cote, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

  • Wyngaard, J. C. and Clifford, S. F.: 1976, ‘Taylor's Hypothesis and High Frequency Turbulence Spectra’, J. Atmos. Sci. 34, 922–929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonia, R.A., Chambers, A.J., Phong-Anant, D. et al. Properties of spatial temperature derivatives in the atmospheric surface layer. Boundary-Layer Meteorol 17, 101–118 (1979). https://doi.org/10.1007/BF00121939

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121939

Keywords

Navigation