Skip to main content
Log in

Turbulence modelling over two-dimensional hills using an Algebraic Reynolds Stress Expression

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We carry out model studies of turbulence quantities for flow over two-dimensional hills using a non-hydrostatic version of the Regional Atmospheric Modeling System (RAMS). We test two turbulence closure models: the first one is an explicit Algebraic Reynolds Stress Model (ARSM) and the second one is a combination of the ARSM and a transport equation for the shear stress {ovuw}. Model predictions for the turbulent stresses are compared with data from a wind-tunnel experiment containing isolated two-dimensional hills of varying slope. From the comparison, it is concluded that the first model can only predict the normal stresses adequately while the second model provides satisfactory predictions for the normal stresses as well as giving an improved result for the shear stress {ovuw}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayotte, K. W., Xu, D., and Taylor, P. A.: 1994, ‘The Impact of Different Turbulence Closures on Predictions of the Mixed Spectral Finite Difference Model for Flow over Topography’, Boundary-Layer Meteorol. 68, 1–33.

    Google Scholar 

  • Beljaars, A. C. M., Walmsley, J. L., and Taylor, P. A.: 1987, ‘A Mixed Spectral Finite-Difference Model for Neutrally Stratified Boundary-Layer Flow over Roughness Changes and Topography’, Boundary-Layer Meteorol. 38, 273–303.

    Google Scholar 

  • Britter, R. E., Hunt, J. C. R., and Richard, K. J.: 1981, ‘Air Flow over a Two-Dimensional Hill: Studies of Velocity Speed-up, Roughness effects and Turbulence’, Quart. J. Roy. Meteorol. Soc. 107, 91–110.

    Google Scholar 

  • Clark, T. L.: 1977, ‘A Small-Scale Dynamic Model Using a Terrain-Following Coordinate Transformation’, J. Computational Phys. 24, 186–215.

    Google Scholar 

  • Counihan, J., 1975, ‘Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880–1972’, Atmos. Environ. 9, 871–905.

    Google Scholar 

  • Detering, H. W. and Etling, D.: 1985, ‘Application of the E-ε Turbulence Model to the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.

    Google Scholar 

  • Duynkerke, P. G.: 1988, ‘Application of the E-ε Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer’, Amer. Meteorol. Soc. 45, 865–880.

    Google Scholar 

  • Finnigan, J. J., Raupach, M. R., Bradley, E. F., and Aldis, G. K., 1990, ‘A Wind Tunnel Study of Turbulent Flow over a Two-Dimensional Ridge’, Boundary-Layer Meteorol. 50, 277–317.

    Google Scholar 

  • Gatski, T. B. and Speziale, C. G.: 1993, ‘On Explicit Algebraic Stress Models for Complex Turbulent Flows’, J. Fluid Mech. 254, 59–78.

    Google Scholar 

  • Hanna, S. R.: 1968, ‘A Method of Estimating Vertical Eddy Transport in the Planetary Boundary Layer Using Characteristics of the Vertical Velocity Spectrum’, J. Atmos. Sci. 25, 1026–1033.

    Google Scholar 

  • Hunt, J. C. R. and Fernholz, H.: 1975, ‘Wind-Tunnel Simulation of the Atmospheric Boundary Layer: a Report on Euromech 50’, J. Fluid Mech. 70, 543–559.

    Google Scholar 

  • Hunt, J. C. R., Leibovich, S., and Richard, K. J.: 1988, ‘Turbulent Shear Flow over Low Hills’, Quart. J. Roy. Meteorol. Soc. 114, 1435–1470.

    Google Scholar 

  • Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Roy. Meteorol. Soc. 101, 929–955.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York.

    Google Scholar 

  • Khurshudyan, L. H., Snyder, W. H., and Nekrasov, I. V.: 1981, ‘Flow and Dispersion of Pollutants over Two-Dimensional Hills’, U.S. Envir. Prot. Agcy. Rpt. No. EPA-6000/4-81-067. Res. Tri. Pk., NC., 131 pp.

  • Launder, B. E. and Li, S. -P.: 1994, ‘On the Elimination of Wall-Topography Parameters from Second-Moment Closure’, Phys. Fluid 6, 999–1006.

    Google Scholar 

  • Launder, B. E., Reece, G. J., and Rodi, W.: 1975, ‘Progress in the Development of a Reynolds-Stress Turbulence Closure’, J. Fluid Mech. 68, 537–566.

    Google Scholar 

  • Mason, P. J. and Sykes, R. I.: 1979, ‘Flow over an Isolated Hill of Moderate Slope’, Quart. J. Roy. Meteorol. Soc. 105, 383–395.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Pope, S. B.: 1975, ‘A More General Effective-Viscosity Hypothesis’, J. Fluid Mech. 72, 331–340.

    Google Scholar 

  • Rodi, W.: 1972, ‘The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation model of Turbulence’, Ph.D. thesis, University of London.

  • Rodi, W.: 1984, ‘Turbulence Models and Their Application in Hydraulics’, IAHR, Netherlands.

    Google Scholar 

  • Snyder, W. H., Khurshudyan, L. H., Nekrasov, I. V., Lawson JR, R. E., and Thompson, R. S.: 1991, ‘Flow and Dispersion of Pollutants within Two-Dimensional Valleys’, Atmos. Environ. 25A, 1347–1375.

    Google Scholar 

  • Taulbee, D. B.: 1992, ‘An Improved Algebraic Reynolds Stress Model and Corresponding Nonlinear Stress Model’, Phys. Fluids A 4, 2555–2561.

    Google Scholar 

  • Taylor, P. A., Walmsley, J. L., and Salmon, J. R.: 1983, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Real Terrain Incorporating Wavenumber-Dependent Scaling’, Boundary-Layer Meteorol. 26, 169–189.

    Google Scholar 

  • Taylor, P. A. and Teunissen, H. W.: 1985, The Askervein Hill Project: Report on the September/October 1983 Main Field Experiment, Internal Rep. MSRB-84–6, Atmos. Environ. Service, Downsview, Ont., Canada.

    Google Scholar 

  • Taylor, P. A., Mason, P. I., and Bradley, E. F.: 1987, ‘Boundary-Layer Flow over Low Hills’, Boundary-Layer Meteorol. 39, 107–132.

    Google Scholar 

  • Walmsley, J. L., Salmon, J. R., and Taylor, P. A.: 1982, ‘On the Application of a Model of Boundary-Layer Flow over Low Hills to Real Terrain’, Boundary-Layer Meteorol. 23, 17–46.

    Google Scholar 

  • Walmsley, J. L., Taylor, P. A., and Keith, T.: 1986, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Complex Terrain with Surface Roughness Modulations (MS3DJH/3R)’, Boundary- Layer Meteorol. 36, 157–186.

    Google Scholar 

  • Xu, D., Ayotte, K. W. and Taylor, P. A.: 1994, ‘Development of a Non-Linear Mixed Spectral Finite Difference Model for Turbulent Boundary-Layer Flow over Topography’, Boundary-Layer Meteorol. 70, 341–367.

    Google Scholar 

  • Ying, R., Canuto, V. M., and Ypma, R. M.: 1994, ‘Numerical Simulation of Flow Data over Two-Dimensional Hills’, Boundary-Layer Meteorol. 70, 401–427.

    Google Scholar 

  • Zeman, O. and Jensen, N. O.: 1987, ‘Modification of Turbulence Characteristic in Flow over Hills’, Quart. J. Roy. Meteorol. Soc. 113, 55–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, R., Canuto, V.M. Turbulence modelling over two-dimensional hills using an Algebraic Reynolds Stress Expression. Boundary-Layer Meteorol 77, 69–99 (1996). https://doi.org/10.1007/BF00121859

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121859

Keywords

Navigation