Skip to main content
Log in

Evolution of five multilocus isozyme systems in the chordates

  • Published:
Genetica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allendorf, F.W., F.M. Utter & B.P. May (1975). Gene duplication within the family Salmonidae; detection and determination of the genetic control of duplicate loci through inheritance studies and examination of populations. In: C.L. Markert (Ed.), Isozymes IV. Academic Press, New York, pp. 415–432.

    Google Scholar 

  • Atkin, N.B. & S. Ohno (1967). DNA values of four primitive chordates. Chromosoma 23: 10–13.

    Google Scholar 

  • Avise, J.C. & B.G. Kitto (1973). Phosphoglucose isomerase gene duplication in the bony fishes, an evolutionary history. Biochem. Genet. 8: 113–132.

    CAS  PubMed  Google Scholar 

  • Bailey, G.S., A.C. Wilson, J.E. Halver & C.L. Johnson (1970). Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J. biol. Chem. 245: 5927–5940.

    CAS  PubMed  Google Scholar 

  • Brewer, J.M., A.J. Peace & R.B. Ashworth (1974). Experimental Techniques in Biochemistry. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Britten, R.J. & E.H. Davidson (1969). Gene regulation for higher cells: A theory. Science 165: 349–357.

    CAS  PubMed  Google Scholar 

  • Britten, R.J. (1971). Repetitive and nonrepetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46: 111–138.

    CAS  PubMed  Google Scholar 

  • Bush, G.L., S.M. Case, A.C. Wilson & J.L. Patton (1977). Rapid speciation and chromosomal evolution in mammals. Proc. natn. Acad. Sci. U.S.A. 74: 3942–3946.

    CAS  Google Scholar 

  • Champion, M.J. & G.S. Whitt (1976). Differential gene expression in multilocus isozyme systems of the developing green sunfish. J. exp. Zool. 196: 263–282.

    CAS  PubMed  Google Scholar 

  • Clayton, J.W., W.G. Franzin & D.N. Tretiak (1973a). Genetics of glycerol-3-phosphate dehydrogenase isozymes in white muscle of lake whitefish (Coregonus clupeiformis). J. Fish. Res. Bd. Can. 30: 187–193.

    CAS  Google Scholar 

  • Clayton, J.W., R.E.K. Harris & D.N. Tretiak (1973b). Identification of supernatant and mitochondrial isozymes of malate dehydrogenase on electropherograms applied to the taxonomic discrimination of walleye (Stizostedion vitreum vitreum), sauger (S. canadense) and suspected interspecific hybrid fishes. J. Fish. Res. Bd. Canada 30: 927–938.

    CAS  Google Scholar 

  • Dando, P.R. (1974). Distribution of multiple glucosephosphate isomerases in teleostean fishes. Comp. Biochem. Physiol. 47B: 663–679.

    Google Scholar 

  • Dayhoff, M. (1972). Atlas of Protein Sequence and Structure Volume 5. National Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • De Lorenzo, D.L. & F.H. Ruddle (1969). Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse. Biochem. Genet. 3: 151–162.

    Google Scholar 

  • Denton, T.E. (1973). Fish Chromosome Methodology. Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  • Engel, W., J. Schmidtke & U. Wolf (1971). Genetic variation of α-glycerophosphate dehydrogenase isoenzymes in clupeoid and salmonid fish. Experientia 27: 1489–1491.

    CAS  PubMed  Google Scholar 

  • Eppenberger, H.M., A. Scholl & H. Ursprung (1971). Tissue specific isoenzyme patterns of creatine kinase (2.7.3.2) in trout. FEBS Letters 14: 317–319.

    CAS  PubMed  Google Scholar 

  • Eppenberger, M.E., H.M. Eppenberger & N.O. Kaplan (1967). Evolution of creatine kinase. Nature 214: 239–241.

    CAS  PubMed  Google Scholar 

  • Ferris, S.D. & G.S. Whitt (1977). Loss of duplicate gene expression after polyploidisation. Nature 265: 258–260.

    CAS  PubMed  Google Scholar 

  • Fisher, S.E. & G.S. Whitt (1978a). Evolution of the creatine kinase isozyme system in primitive vertebrates. Proc. Calif. Acad. Sci. 134: 142–159.

    Google Scholar 

  • Fisher, S.E. & G.S. Whitt (1978b). Evolution of isozyme loci and their differential tissue expressions: Creatine kinase as a model system. J. molec. Evol. 12: 25–55.

    CAS  PubMed  Google Scholar 

  • Goldberg, E. (1977). Isozymes in testes and spermatozoa. In: M.C. Rattazzi, J.G. Scandalios and G.S. Whitt, (eds.) Isozymes: Current Topics in Biological and Medical Research. Alan R. Liss, Inc., New York, Vol. 1, pp. 79–124.

    Google Scholar 

  • Gracy, R.W. (1975). Nature of the multiple forms of glucosephosphate and triosephosphate isomerases. In: C.L. Markert, (ed.) Isozymes I. Academic Press, New York, pp. 471–487.

    Google Scholar 

  • Hinegardner, R. (1968). Evolution of cellular DNA content in teleost fishes. Am. Nat. 102: 517–523.

    Google Scholar 

  • Hinegardner, R. & D.E. Rosen (1972). Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106: 621–644.

    CAS  Google Scholar 

  • Holmes, R.S. & R.K. Scopes (1974). Immunochemical homologies among vertebrate lactate dehydrogenase isozymes. Eur. J. Biochem. 43: 167–177.

    CAS  PubMed  Google Scholar 

  • Hopkinson, D.A., S. Peters & H. Harris (1974). Rare electrophoretic variants of glycerol-3-phosphate dehydrogenase: Evidence for two structural gene loci (GPD1 and GPD2). Ann. hum. Genet. 37: 477–484.

    CAS  PubMed  Google Scholar 

  • Horowitz, J.H. & G.S. Whitt (1972). Evolution of a nervous system specific lactate dehydrogenase isozyme in fish. J. exp. Zool. 180: 13–32.

    CAS  Google Scholar 

  • IUPAC-IUB Commission on Enzyme Nomenelature (1973). Enzyme Nomenclature. Elsevier Pub. Inc., New York.

    Google Scholar 

  • IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1977). Nomenclature of multiple forms of enzymes recommendation (1976). J. biol. Chem. 252: 5039–5941.

    Google Scholar 

  • Jacobs, H., H. Heldt & M. Klingbergen (1964). High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isozyme of creatine kinase. Biochem. biophys. Res. Comm. 16: 516–521.

    CAS  PubMed  Google Scholar 

  • Karig, L.M. & A.C. Wilson (1971). Genetic variation in supernatant malate dehydrogenase of birds and reptiles. Biochem. Genet. 5: 211–221.

    CAS  PubMed  Google Scholar 

  • Kimura, M. & T. Ohta (1974). On Some Principles Governing Molecular Evolution. Proc. natn. Acad. Sci. U.S.A. 71: 2848–2852.

    CAS  Google Scholar 

  • Kleine, T.O. (1965). Localization of creatine kinase in microsomes and mitochondria of human heart and skeletal muscle and cerebral cortex. Nature 207: 1393–1394.

    CAS  PubMed  Google Scholar 

  • Kucherlapati, R.S., R.P. Cregan & F.H. Ruddle (1974). Progress in human gene mapping by somatic cell hybridization. In: The Cell Nucleus. Academic Press, New York, Vol. II, pp. 209–222.

    Google Scholar 

  • Langley, C.H. & W.M. Fitch (1974). An examination of the constancy of the rate of molecular evolution. J. molec. Evol. 3: 161–177.

    CAS  PubMed  Google Scholar 

  • Lebherz, H.G. & W.J. Rutter (1969). Distribution of fructose biphosphate aldolase variants in biological systems. Biochemistry 8: 109–121.

    CAS  PubMed  Google Scholar 

  • Long, G.L. (1976). The stereospecific distribution and evolutionary significance of invertebrate lactate dehydrogenases. Comp. Biochem. Physiol. 55B: 77–88.

    Google Scholar 

  • Markert, C.L. & F. Moller (1959). Multiple forms of enzymes: Tissue, ontogenetic, and species specific patterns. Proc. natn. Acad. Sci. U.S.A. 45: 753–763.

    CAS  Google Scholar 

  • Markert, C.L. (1975). Biology of Isozymes. In: C.L. Markert (ed.), Isozymes I, Academic Press, New York, pp. 1–10.

    Google Scholar 

  • Markert, C.L., J.B. Shaklee & G.S. Whitt (1975). Evolution of a gene. Science 189: 102–114.

    CAS  PubMed  Google Scholar 

  • Masters, C.J. & R.S. Holmes (1975). Haemoglobin, Isoenzymes and Tissue Differentiation. North Holland Pub. Corp., Amsterdam.

    Google Scholar 

  • Mo, Y., C.D. Young, R.W. Gracy, N.D. Carter & P.R. Dando. (1975). Isolation and characterization of tissue-specific isozymes of glucosephosphate isomerase from catfish and conger. J. biol. Chem. 250: 6747–6755.

    CAS  PubMed  Google Scholar 

  • Morizot, D.C., D.A. Wright & M.J. Siciliano (1977). Three linked enzyme loci in fishes: Implications in the evolution of vertebrate chromosomes. Genetics 86: 645–656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. & R. Chakraborty (1973). Genetic distance and electrophoretic identity of proteins between taxa. J. molec. Evol. 2: 323–328.

    CAS  PubMed  Google Scholar 

  • Nelson, J.S. (1976). Fishes of the world. John Wiley and Sons, New York.

    Google Scholar 

  • Numachi, K. (1970). Lacture and malate dehydrogenase isozyme patterns in fish and marine mammals. Bull. Jap. Soc. Sci. Fish. 36: 1067–1077.

    CAS  Google Scholar 

  • Mumachi, K. (1971). Genetic polymorphism of α-glycerophosphate dehydrogenase in saury, Cololabis saura I. Seven variant forms and genetic control. Bull. Jap. Soc. Sci. Fish., 37: 755–760.

    Google Scholar 

  • Numachi, K., Y. Matsumuya & R. Sato (1972). Duplicate genetic loci and variant from (sic) of malate dehydrogenase in chum salmon and rainbow trout. Bull. Jap. Soc. Sci. Fish. 38: 699–706.

    CAS  Google Scholar 

  • Ohno, S., U. Wolf & N.B. Atkin (1967). Evolution from fish to mammals by gene duplication. Hereditas 59: 169–187.

    Google Scholar 

  • Ohno, S. (1970). Evolution by Gene Duplication. Springer-Verlag, New York.

    Google Scholar 

  • Ohno, S. (1974). Protochordata, Cyclostomata, and Pisces. In: B. John, (ed.), Animal Cytogenetics 4. Borntraeger, Berlin.

    Google Scholar 

  • Perriard, J.C., A. Scholl & H.M. Eppenberger (1972). Comparative studies on creatine kinase isozymes from skeletal muscle and stomach of trout. J. exp. Zool., 182: 110–126. 110–126.

    Google Scholar 

  • Schmidtke, J., G. Dunkhase & W. Engel (1975). Genetic variation of phosphoglucose isomerase isoenzymes in fish of the orders Ostariophysi and Isopondyli. Comp. Biochem. Physiol. 50B: 395–398.

    Google Scholar 

  • Schmidtke, J., C. Weiler, B. Kunz & W. Engel (1977). Isozymes of a tunicate and a cephalochordate as a test of polyploidization in chordate evolution. Nature 266: 532–533.

    CAS  PubMed  Google Scholar 

  • Scholl, A. & H.M. Eppenberger (1971). Patterns of isoenzymes of creatine kinase in teleostean fish. Comp. Biochem. Physiol. 42B: 221–226.

    Google Scholar 

  • Senkbeil, I. & H.B. WhiteIII (1978). Parallel evolution of pairs of dehydrogenase isozymes. J. molec. Evol. 11: 57–66.

    CAS  PubMed  Google Scholar 

  • Sensabaugh, G.F. & N.O. Kaplan (1971). A lactate dehydrogenase specific to the liver of gadoid fish. J. biol. Chem. 247: 585–593.

    Google Scholar 

  • Shaklee, J.B., K.L. Kepes & G.S. Whitt (1973). Specialized lactate dehydrogenase isozymes: The molecular and genetic basis for the unique eye and liver LDHs of teleost fishes. J. exp. Zool. 185: 217–240.

    CAS  PubMed  Google Scholar 

  • Shaw, C.R. & R. Prasad (1970). Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genet. 4: 279–320.

    Google Scholar 

  • Sparrow, A.H., H.J. Price & A.J. Underbrink (1972). A survey of DNA content per cell and per chromosome of prokarytic and eukaryotic organisms: Some evolutionary considerations. Brookhaven Symp. Biol. 23: 451–494.

    CAS  PubMed  Google Scholar 

  • Sparrow, A.H. & A.F. Nauman (1976). Evolution of genome size by DNA doublings. Science 192: 524–529.

    CAS  PubMed  Google Scholar 

  • Thompson, A.R., J.W. Eveleigh, J.F. Laws & B.J. Miles (1968). The comparative biochemistry of mammalian creatine phosphotransferases. In: N.van Thoai and J. Roche, (eds.) Homologous Enzymes and Biochemical Evolution, Gordon Breach, New York, pp. 255–277.

    Google Scholar 

  • Thompson, K.S. & K. Maraszko (1978). Estimation of cell size and DNA content in fossil fishes and amphibians. J. exp. Zool. 205: 315–320.

    Google Scholar 

  • Watts, D.C. (1968). The origin and evolution of the phosphagen phosphotransferases. In: N.van Thoai and J. Roche (eds.), Homologous Enzymes and Biochemical Evolution. Gordon and Breach, New York, pp. 279–296.

    Google Scholar 

  • Watts, D.C. (1975). Evolution of phosphagen kinases in the chordate line. Symp. zool. Soc. London, 36: 105–127.

    Google Scholar 

  • Watts, D.C., B. Focant, B.M. Moreland & R.L. Watts (1972). Formation of a hybrid enzyme between echinoderm arginine kinase and mammalian creatine kinase. Nature New Biol., 237: 51–53.

    CAS  PubMed  Google Scholar 

  • Watts, R.L. (1971). Genes, chromosomes and molecular evolution. In: E. Schoffeniels (ed.), Biochemical evolution and the origin of life. American Elsevier Pub. Corp., New York, pp. 14–42.

    Google Scholar 

  • Watts, R.L. & D.C. Watts (1968a). The implications for molecular evolution of possible mechanisms of primary gene duplication. J. theor. Biol. 20: 227–244.

    CAS  PubMed  Google Scholar 

  • Watts, R.L. & D. C. Watts (1968b). Gene duplication and the evolution of enzymes. Nature 217: 1125–1130.

    CAS  PubMed  Google Scholar 

  • Wheat, T.E., G.S. Whitt & W.F. Childers (1972). Linkage relationships between homologous malate dehydrogenase loci in teleosts. Genetics 70: 337–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheat, T.E., G.S. Whitt & W.F. Childers (1973). Linkage relationships of six enzyme loci in interspecific sunfish hybrids (genus Lepomis). Genetics 74: 343–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitt, G.S. (1969). Homology of lactate dehydrogenase genes: E gene function in the teleost nervous system. Science 166: 1156–1158.

    CAS  PubMed  Google Scholar 

  • Whitt, G.S. (1970a). Developmental genetics of the lactate dehydrogenase isozymes of fish. J. exp. Zool. 175: 1–36.

    CAS  PubMed  Google Scholar 

  • Whitt, G.S. (1970b). Genetic variation of supernatant and mitochondrial malate dehydrogenase isozymes in the teleost Fundulus heteroclitus. Experientic 26: 734–736.

    CAS  Google Scholar 

  • Whitt, G.S., E.T. Miller & J. Shaklee (1973). Developmental and biochemical genetics of lactate dehydrogenase isozymes in fishes. In: J.H. Schröder, (ed.) Genetics and Mutagenesis of Fish. Springer-Verlag, New York, pp. 243–276.

    Google Scholar 

  • Whitt, G.S., J.B. Shaklee & C.L. Markert (1975). Evolution of the lactate dehydrogenase isozymes of fishes. In: C.L. Markert (ed.), Isozymes IV. Academic Press, New York, pp. 381–400.

    Google Scholar 

  • Whitt, G.S., W.F. Childers, J.B. Shaklee & J. Matsumoto (1976). Linkage analysis of the multilocus glucosephosphate isomerase isozyme system in sunfish (Centrarchidae, Teleostei). Genetics 82: 35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitt, G.S., D.P. Philipp & W.F. Childers (1977). Aberrant gene expression during development of hybrid sunfishes (Perciformes, Teleostei). Differentiation 9: 97–109.

    CAS  PubMed  Google Scholar 

  • Wilson, A.C., S.S. Carlson & T.J. White (1977). Biochemical evolution. Ann. Rev. Biochem. 46: 573–649.

    CAS  PubMed  Google Scholar 

  • Zinkham, W.H., H. Isensee & J.H. Renwick (1969). Linkage of lactate dehydrogenase B and C loci in pigeans. Science 164: 185–187.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, S.E., Shaklee, J.B., Ferris, S.D. et al. Evolution of five multilocus isozyme systems in the chordates. Genetica 52, 73–85 (1980). https://doi.org/10.1007/BF00121817

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121817

Keywords

Navigation